Artifact 270f4be1052aa5a6a6c61620cbeb5e9d19e76b5cb58ac9a5acb65f0e915bda9f:
- Executable file
r37/doc/manual2/lie.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3094) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/lie.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3094) [annotate] [blame] [check-ins using]
\chapter[LIE: Classification of Lie algebras]% {LIE: Functions for the classification of real n-dimensional Lie algebras} \label{LIE} \typeout{{LIE: Functions for the classification of real n-dimensional Lie algebras}} {\footnotesize \begin{center} Carsten and Franziska Sch\"obel\\ The Leipzig University, Computer Science Department \\ Augustusplatz 10/11, \\ O-7010 Leipzig, Germany \\[0.05in] e--mail: cschoeb@aix550.informatik.uni-leipzig.de \end{center} } \ttindex{LIE} {\bf LIE} is a package of functions for the classification of real n-dimensional Lie algebras. It consists of two modules: {\bf liendmc1} and {\bf lie1234}. \section{liendmc1} With the help of the functions in this module real n-dimensional Lie algebras $L$ with a derived algebra $L^{(1)}$ of dimension 1 can be classified. $L$ has to be defined by its structure constants $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with $[X_i,X_j]=c_{ij}^k X_k$. The user must define an ARRAY LIENSTRUCIN($n,n,n$) with n being the dimension of the Lie algebra $L$. The structure constants LIENSTRUCIN($i,j,k$):=$c_{ij}^k$ for $i<j$ should be given. Then the procedure LIENDIMCOM1 can be called. Its syntax is:\ttindex{LIENDIMCOM1} \begin{verbatim} LIENDIMCOM1(<number>). \end{verbatim} {\tt <number>} corresponds to the dimension $n$. The procedure simplifies the structure of $L$ performing real linear transformations. The returned value is a list of the form \begin{verbatim} (i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or (ii) {HEISENBERG(k),COMMUTATIVE(n-k)} \end{verbatim} with $3\leq k\leq n$, $k$ odd. The returned list is also stored as\ttindex{LIE\_LIST}{\tt LIE\_LIST}. The matrix LIENTRANS gives the transformation from the given basis $\{X_1,\ldots ,X_n\}$ into the standard basis $\{Y_1,\ldots ,Y_n\}$: $Y_j=($LIENTRANS$)_j^k X_k$. \section{lie1234} This part of the package classifies real low-dimensional Lie algebras $L$ of the dimension $n:={\rm dim}\,L=1,2,3,4$. $L$ is also given by its structure constants $c_{ij}^k$ in the basis $\{X_1,\ldots,X_n\}$ with $[X_i,X_j]=c_{ij}^k X_k$. An ARRAY LIESTRIN($n,n,n$) has to be defined and LIESTRIN($i,j,k$):=$c_{ij}^k$ for $i<j$ should be given. Then the procedure LIECLASS can be performed whose syntax is:\ttindex{LIECLASS} \begin{verbatim} LIECLASS(<number>). \end{verbatim} {\tt <number>} should be the dimension of the Lie algebra $L$. The procedure stepwise simplifies the commutator relations of $L$ using properties of invariance like the dimension of the centre, of the derived algebra, unimodularity {\em etc.} The returned value has the form: \begin{verbatim} {LIEALG(n),COMTAB(m)}, \end{verbatim} where the value $m$ corresponds to the number of the standard form (basis: $\{Y_1, \ldots ,Y_n\}$) in an enumeration scheme. This returned value is also stored as LIE\_CLASS. The linear transformation from the basis $\{X_1,\ldots,X_n\}$ into the basis of the standard form $\{Y_1,\ldots,Y_n\}$ is given by the matrix LIEMAT: $Y_j=($LIEMAT$)_j^k X_k$.