Artifact 2597c6c2619579731785a210a6b67c14baa1560724b7df2c2a8ec6158d508680:
- Executable file
r36/cslbase/restart.c
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 166078) [annotate] [blame] [check-ins using] [more...]
/* restart.c Copyright (C) 1989-1999 Codemist Ltd */ /* * Code needed to start off Lisp when no initial heap image is available, * or to re-instate links between heap and C-coded core if there IS a * heap loaded. This code is run in a state that is in effect (in-package * "lisp"). */ /* Signature: 2c97b73c 07-Mar-2000 */ #include <stdarg.h> #include <string.h> #include <ctype.h> #include <float.h> #include "machine.h" #include "version.h" #include "tags.h" #include "cslerror.h" #include "externs.h" #include "read.h" #include "stream.h" #include "arith.h" #include "entries.h" #ifdef TIMEOUT #include "timeout.h" #endif #ifdef ADDRESS_SIGN_UNKNOWN int32 address_sign; #endif Lisp_Object C_nil; Lisp_Object *stackbase; Lisp_Object *nilsegment; Lisp_Object *stacksegment; int32 stack_segsize = 1; char *exit_charvec = NULL; #ifdef NILSEG_EXTERNS unsigned32 byteflip; Lisp_Object codefringe; Lisp_Object volatile codelimit; Lisp_Object * volatile stacklimit; Lisp_Object fringe; Lisp_Object volatile heaplimit; Lisp_Object volatile vheaplimit; Lisp_Object vfringe; int32 nwork; int32 exit_reason; int32 exit_count; unsigned32 gensym_ser, print_precision, miscflags; int32 current_modulus, fastget_size, package_bits; Lisp_Object lisp_true, lambda, funarg, unset_var, opt_key, rest_key; Lisp_Object quote_symbol, function_symbol, comma_symbol, comma_at_symbol; Lisp_Object cons_symbol, eval_symbol, work_symbol, evalhook, applyhook; Lisp_Object macroexpand_hook, append_symbol, exit_tag; Lisp_Object exit_value, catch_tags; #ifdef COMMON Lisp_Object keyword_package; #endif Lisp_Object current_package; Lisp_Object startfn; #ifdef COMMON Lisp_Object all_packages, package_symbol, internal_symbol; Lisp_Object external_symbol, inherited_symbol; #endif Lisp_Object gensym_base, string_char_sym, boffo; #ifdef COMMON Lisp_Object key_key, allow_other_keys, aux_key; #endif Lisp_Object err_table; #ifdef COMMON Lisp_Object format_symbol; #endif Lisp_Object progn_symbol; #ifdef COMMON Lisp_Object expand_def_symbol, allow_key_key, declare_symbol, special_symbol; #endif Lisp_Object lisp_work_stream, charvec, raise_symbol, lower_symbol, echo_symbol; Lisp_Object codevec, litvec, supervisor, B_reg, savedef, comp_symbol; Lisp_Object compiler_symbol, faslvec, tracedfn, lisp_terminal_io; Lisp_Object lisp_standard_output, lisp_standard_input, lisp_error_output; Lisp_Object lisp_trace_output, lisp_debug_io, lisp_query_io; Lisp_Object prompt_thing, faslgensyms, prinl_symbol, emsg_star, redef_msg; Lisp_Object expr_symbol, fexpr_symbol, macro_symbol; Lisp_Object cl_symbols, active_stream, current_module; Lisp_Object features_symbol, lisp_package, sys_hash_table; Lisp_Object help_index, cfunarg, lex_words, get_counts, fastget_names; Lisp_Object input_libraries, output_library, current_file, break_function; Lisp_Object standard_output, standard_input, debug_io; Lisp_Object error_output, query_io, terminal_io, trace_output, fasl_stream; Lisp_Object native_code, native_symbol, traceprint_symbol, loadsource_symbol; Lisp_Object hankaku_symbol; Lisp_Object workbase[51]; #endif Lisp_Object user_base_0, user_base_1, user_base_2, user_base_3, user_base_4; Lisp_Object user_base_5, user_base_6, user_base_7, user_base_8, user_base_9; Lisp_Object eq_hash_tables, equal_hash_tables; /* * On an Intel 80x86 (because I am almost forced to) and on other machines * (much more cheerfully, and for choice!) I will arrange my memory as * a number of pages. A general pool of these pages gets used * to satisfy requests for heap, vector heap and BPS space. Running * under the Phar Lap 286 DOS extender in protected mode it seemed that * all segments returned by malloc() will have their top bit (when punned * as a long int) zero. Thus even on an 80x86 I could make progress.. * Ditto under the Zortech (Rational Systems) 80286 extender. Win32 * (Windows NT) seems OK too, but Win32s has given me pointers with * their top bit set... Ugh! For the 80286 and small machines the pages * will be just 64 Kbytes - for larger machines I will make them a bit * bigger (typically 256 Kbytes). See PAGE_BITS in machine.h. * * Since this code was first written it has become silly to even consider * computers with 16-bit segmented addressing! It is still convenient to * allocate memory in chunks, although that does set an upper limit to the * size of any individual object: this may hurt if a user wants a big vector * and it does constrain the range of big-numbers supported by the * artithmetic. */ void **pages, **heap_pages, **vheap_pages, **bps_pages, **native_pages; #ifndef NO_COPYING_GC void **new_heap_pages, **new_vheap_pages, **new_bps_pages, **new_native_pages; #endif int32 pages_count, heap_pages_count, vheap_pages_count, bps_pages_count, native_pages_count; #ifndef NO_COPYING_GC int32 new_heap_pages_count, new_vheap_pages_count, new_bps_pages_count, new_native_pages_count; #endif char program_name[64] = {0}; #ifndef COMMON #ifdef CWIN /* * Could be useful for other windowed systems. */ char **loadable_packages, **switches; #endif #endif int native_code_tag; int native_pages_changed; int32 native_fringe; int current_fp_rep; static int old_fp_rep; static CSLbool flip_needed; static int old_page_bits; /* * The next function is handed a page * of hard code that has just been loaded into memory and it must scan it * performing all relevant relocation. fringe give the offset within the * page that is the first byte not in use. The first 4 bytes of the page * are reserved for storing fringe from one run to the next. The exact * format of the rest must be sufficient to allow this code to scan * and correct the code, but thus far I have not defined it, and it will * anyway tend to need extension each time a new target architecture is * incorporated (to support the new and curious relocation modes tha the * new machine requires). */ static void relocate_native_code(unsigned char *p, int32 n) { /* * One helpful observation here. In pretty well all other parts of CSL * there is a possibility that an image file created on one computer will * be reloaded on another and so all the code is ultra-careful to avoid * sensitivity to byte order etc etc issues. But here the native code that * is being loaded MUST have been created using the conventions of the * current computer (otherwise I should not be loading it and I will be * in huge trouble when I try to execute code from it). So direct and * simple access to data is legitimate. */ int32 k = 8; term_printf("Native code page type %d size %d to be relocated\n", native_code_tag, n); while (k <= n) { unsigned char *block = p + k; int32 len = *(int32 *)block; term_printf("Block of %d bytes found\n", len); if (len == 0) { term_printf("End of native page reached\n"); break; } relocate_native_function(block); k += len; } } void relocate_native_function(unsigned char *bps) { /* * Each chunk of memory allocated by make-native will have its length (in * bytes) in its first 32-bit word. Next comes the offset of the * start of real code in the block. Just after that there will be a * hunk of relocation information. The code proper must not start until * after the relocation records. Relocation information is stored in the * following format as a sequence of bytes: * 0 end of relocation information. * 1 to 170/xx encode a value 0 to 169 * 171 to 255/xx/yy extra byte yy extends following offset xx, and * its top bit is used to extend opcode to range * 0 to 169. * The opcode now in the range 0 to 169 is interpreted as * 169 no operation * otherwise (0-12)*(0-12) as target*mode */ unsigned char *r = bps + 4; unsigned char *next; int32 n; int code; n = *r++; /* code start offset in LSB format */ n |= (*r++) << 8; n |= (*r++) << 16; n |= (*r++) << 24; next = bps + n; #define RELOC_END 0 while ((code = *r++) != RELOC_END) { int32 off = *r++; unsigned char *target; /* * A native compiler will have to generate a sequence of bytes that adhere to * the contorted format used here. */ if (code <= 170) code--; else { int off1 = *r++; code = 2*(code-171) + (off1 >> 7); off = off | ((off1 & 0x7f) << 8); } next += off; /* address where next relocation is to be applied */ #define RELOC_NOP 169 /* * One might like to note that with a long offset the NOP opcode turns into * an opcode byte 0xff. And if it then has the longest possible offset one] * gets the 3-byte sequence 0xff/0xff/0xff. */ if (code == RELOC_NOP) continue; #define RELOC_0_ARGS 0 #define RELOC_1_ARGS 1 #define RELOC_2_ARGS 2 #define RELOC_3_ARGS 3 #define RELOC_DIRECT_ENTRY 4 #define RELOC_VAR 5 #define RELOC_SELF_1 6 #define RELOC_SELF_2 7 switch (code % 13) { default: term_printf("Illegal relocation byte %.2x\n", code); my_exit(EXIT_FAILURE); case RELOC_SELF_1: /* * base of current native code block with an 8-bit offset. */ target = bps + *r++; break; case RELOC_SELF_2: /* * base of current native code block with 15 or 23-bit offset. The first byte * is the low 8-bits of the offset. The next is the next 7 bits, with its * 0x80 bit selecting whether a third byte is needed (which it will hardly * ever be). */ off = *r++; off = off + (*r++ << 8); if (off & 0x8000) off = (off & 0x7fff) + (*r++ << 15); target = bps + off; break; case RELOC_0_ARGS: /* * The next few relocation modes provide access to the C entrypoints * associated with a medium number of Lisp functions. The tables and * offsets used are documented in file "eval4.c" and are as used with the * byte-code compiler. */ target = (unsigned char *)zero_arg_functions[*r++]; break; case RELOC_1_ARGS: target = (unsigned char *)one_arg_functions[*r++]; break; case RELOC_2_ARGS: target = (unsigned char *)two_arg_functions[*r++]; break; case RELOC_3_ARGS: target = (unsigned char *)three_arg_functions[*r++]; break; case RELOC_DIRECT_ENTRY: /* * There are some entrypoints into the CSL kernel that are not * called using the usual Lisp conventions but are at a lower-level. * A selection of these are visible via the table "useful_functions" * in file fns3.c. This table can be extended if a native-mode compiler * needs access to any other speciality. */ target = (unsigned char *)useful_functions[*r++]; break; case RELOC_VAR: /* * The function address_f_var (in fns3.c) returns the address of a Lisp * internal variable. See there for the numeric encoding used and what can * be accessed. */ target = (unsigned char *)address_of_var(*r++); break; } #define RELMODE_ABSOLUTE 0 #define RELMODE_RELATIVE 1 #define RELMODE_REL_PLUS_4 2 #define RELMODE_REL_MINUS_2 3 #define RELMODE_REL_MINUS_4 4 #define RELMODE_REL_OFFSET 5 #define RELMODE_SPARE1 6 #define RELMODE_SPARE2 7 switch (code/13) { default: term_printf("Illegal relocation byte %.2x\n", code); my_exit(EXIT_FAILURE); case RELMODE_ABSOLUTE: /* * relocate by pointing a 32-bit value directly at the absolute address * of the target. */ *(int32 *)next = (int32)target; break; case RELMODE_RELATIVE: /* * relocate by setting a 32-bit value of the offset from its own first * byte to the target. */ *(int32 *)next = (int32)target - (int32)next; break; case RELMODE_REL_PLUS_4: /* * relocate by setting a 32-bit value of the offset from the start of the * word after it. */ *(int32 *)next = (int32)target - ((int32)next + 4); break; case RELMODE_REL_MINUS_2: /* * relocate by setting a 32-bit value of the offset from the address 2 bytes * before its start. This may be used on machines where the relative address * is computed based on the start of the instruction rather than the start of * the field within the instruction that contains the offset. */ *(int32 *)next = (int32)target - ((int32)next - 2); break; case RELMODE_REL_MINUS_4: /* * relocate by setting a 32-bit value of the offset from the address 4 bytes * before its start. This may be used on machines where the relative address * is computed based on the start of the instruction rather than the start of * the field within the instruction that contains the offset. */ *(int32 *)next = (int32)target - ((int32)next - 4); break; case RELMODE_REL_OFFSET: /* * relocate by setting a 32-bit value of the offset from some place * offset using an 8-bit signed value from the start of the address. The * offset represents the number of bytes after the start of the address * that is to be used in the calculation. Note that the special values * -4, -2, 0 and 4 need never be used here because there are special * relocation modes for those common cases. */ code = *r++; if (code & 0x80) code |= ~0xff; /* Sign extend */ *(int32 *)next = (int32)target - ((int32)next + code); break; } } } static int32 fread_count; static unsigned char *fread_ptr; #ifdef SIXTEEN_BIT #define FREAD_BUFFER_SIZE 0x4000 /* 16 Kbytes of buffer */ #else #define FREAD_BUFFER_SIZE 0xc000 /* 48 Kbytes of buffer */ #endif static unsigned char *pair_c, *char_stack; static unsigned short int *pair_prev; static void Cfread(char *p, int32 n) { /* * The decompression process does not need hashed access to see if * character-pairs have been seen before, but it can need a stack to * unwind codes that have very lengthy expansions. */ int c1, k; unsigned int prev, c, next_code; int32 count = fread_count; unsigned char *ptr = fread_ptr; if (n < compression_worth_while) { #ifdef MAYBE_AVOID_A_DATA_COPY_OPERATION if (n > count) { memcpy(p, ptr, (size_t)count); p += count; n -= count; } while (n >= FREAD_BUFFER_SIZE) { count = Iread((unsigned char *)p, FREAD_BUFFER_SIZE); p += count; n -= count; } /* * Here I believe that I am in the clear using the (Lisp) stack as * a buffer area. This is because Cfread is only used to read heap images, * and when such an image is being loaded the contents of the old one * (including the stack) are not too relevant. */ ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); #endif while (n > count) { memcpy(p, ptr, (size_t)count); p += count; n -= count; ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } if (n != 0) { memcpy(p, ptr, (size_t)n); ptr += n; count -= n; } fread_count = count; fread_ptr = ptr; return; } next_code = 256; if (count == 0) { ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } c = *ptr++; count--; if (count == 0) { ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } c = (c << 8) | *ptr++; count--; prev = c >> 4; *p++ = (char)prev; /* The first character is not compressed */ n--; while (n > 0) { if (count == 0) { ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } c = ((c & 0xf) << 8) | *ptr++; count--; /* * Decode the next 12 bit character */ c1 = c; k = 1; while (c1 >= 256) { char_stack[k++] = pair_c[c1]; if (pair_prev[c1] > CODESIZE || k >= CODESIZE) { term_printf("Bad decoded char %x -> %x, k=%d\n", c1, pair_prev[c1], k); my_exit(EXIT_FAILURE); } c1 = pair_prev[c1]; } /* * Write the decoded stuff into the output array. */ n -= k; *p++ = (char)c1; while (k != 1) { *p++ = char_stack[--k]; } /* * ... then build up the decoding tables ready for next time. Of course * the table building in this decoder MUST exactly match the behaviour of * the compression code above. */ if (next_code >= CODESIZE) next_code = 256; else { pair_prev[next_code] = (unsigned short int)prev; pair_c[next_code] = c1; next_code++; } prev = c; if (n <= 0) break; /* * read the next 12 bit character. */ if (count == 0) { ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } c = *ptr++; count--; if (count == 0) { ptr = (unsigned char *)stack; count = Iread(ptr, FREAD_BUFFER_SIZE); } c = (c << 8) | *ptr++; count--; /* * Decode it... */ c1 = c >> 4; k = 1; while (c1 >= 256) { char_stack[k++] = pair_c[c1]; if (pair_prev[c1] > CODESIZE || k >= CODESIZE) { term_printf("Bad decoded char %x -> %x, k=%d\n", c1, pair_prev[c1], k); my_exit(EXIT_FAILURE); } c1 = pair_prev[c1]; } /* * Write the decoded stuff into the output array. */ n -= k; *p++ = (char)c1; while (k != 1) { *p++ = char_stack[--k]; } /* * ... then build up the decoding tables ready for next time. Of course * the table building in this decoder MUST exactly match the behaviour of * the compression code above. */ if (next_code >= CODESIZE) next_code = 256; else { pair_prev[next_code] = (unsigned short int)prev; pair_c[next_code] = c1; next_code++; } prev = c >> 4; } fread_count = count; fread_ptr = ptr; } #define flip_bytes(a) (flip_needed ? flip_bytes_fn(a) : (a)) static unsigned32 flip_bytes_fn(unsigned32 x) { unsigned32 b0, b1, b2, b3; b0 = (x >> 24) & 0xffU; b1 = (x >> 8) & 0xff00U; b2 = (x << 8) & 0xff0000U; b3 = (x << 24) & 0xff000000U; return b0 | b1 | b2 | b3; } #define flip_halfwords(a) (flip_needed ? flip_halfwords_fn(a) : (a)) static unsigned32 flip_halfwords_fn(unsigned32 x) { unsigned32 b0, b1, b2, b3; b0 = (x >> 8) & 0xffU; b1 = (x << 8) & 0xff00U; b2 = (x >> 8) & 0xff0000U; b3 = (x << 8) & 0xff000000U; return b0 | b1 | b2 | b3; } void convert_fp_rep(void *p, int old_rep, int new_rep, int type) { unsigned32 *f = (unsigned32 *)p; if (old_rep == new_rep) return; /* * type == 0 for sfloat, 1 for single float, 2 for double and 3 for extended. * in CSL mode only case 2 can arise. */ /* * At present conversions involving IBM370 or VAX representations are not * supported, i.e. only IEEE floating point units are allowed for. * Extended mode is not implemented yet... i.e. I only really expect * to be using (64-bit) double precision floating point values. */ if (type >= 2 && ((old_rep ^ new_rep) & FP_WORD_ORDER)) { unsigned32 w = f[0]; f[0] = f[1]; f[1] = w; } if ((old_rep ^ new_rep) & FP_BYTE_ORDER) { f[0] = flip_bytes_fn(f[0]); if (type >= 2) f[1] = flip_bytes_fn(f[1]); } if ((old_rep|new_rep) & (FP_VAXREP|FP_IBMREP)) { term_printf( "\n+++ This cross-floating representation conversion not supported\n"); /* * I have not implemented conversions that involve VAX or s/370 representations */ my_exit(EXIT_FAILURE); } return; } static void adjust(Lisp_Object *cp) /* * If p is a pointer to an object that has moved, adjust it. */ { Lisp_Object nil = C_nil, p = flip_bytes(*cp); if (p == SPID_NIL) *cp = nil; else if (is_cons(p)) { int32 h = (int32)heap_pages[(p>>PAGE_BITS) & PAGE_MASK]; *cp = (Lisp_Object)((char *)doubleword_align_up(h) + (p & OFFSET_MASK)); } else if (is_immed_or_cons(p)) { #ifdef COMMON if (is_sfloat(p)) { int32 w = flip_bytes(p); /* delicate here!! */ convert_fp_rep((void *)&w, old_fp_rep, current_fp_rep, 0); *cp = w; } #endif *cp = p; /* Immediate data here */ } else { int32 h = (int32)vheap_pages[(p>>PAGE_BITS) & PAGE_MASK]; *cp = (Lisp_Object)((char *)doubleword_align_up(h) + (p & OFFSET_MASK)); } } static void adjust_consheap(void) { nil_as_base int32 page_number; for (page_number = 0; page_number < heap_pages_count; page_number++) { void *page = heap_pages[page_number]; char *low = (char *)doubleword_align_up((int32)page); char *start = low + CSL_PAGE_SIZE; int32 len = flip_bytes(qcar(low)); char *fr; qcar(low) = len; fr = low + len; fringe = (Lisp_Object)fr; heaplimit = (Lisp_Object)(low + SPARE); while (fr < start) { adjust((Lisp_Object *)fr); fr += sizeof(Lisp_Object); } } } entry_point entries_table[] = { /* * All values that can go in the function cells of symbols to stand for * special interpreter activity are kept here. In most cases where there * is an entrypoint there is a corresponding one that behaves just the * same except that it has tracing enabled. */ {0, "xillegal"}, {(void *)undefined1, "1undefined1"}, {(void *)undefined2, "2undefined2"}, {(void *)undefinedn, "nundefinedn"}, {(void *)autoload1, "1autoload1"}, {(void *)autoload2, "2autoload2"}, {(void *)autoloadn, "nautoloadn"}, {(void *)interpreted1, "1interpreted1"}, {(void *)traceinterpreted1, "1traceinterpreted1"}, {(void *)double_interpreted1, "1double_interpreted1"}, {(void *)interpreted2, "2interpreted2"}, {(void *)traceinterpreted2, "2traceinterpreted2"}, {(void *)double_interpreted2, "2double_interpreted2"}, {(void *)interpretedn, "ninterpretedn"}, {(void *)traceinterpretedn, "ntraceinterpretedn"}, {(void *)double_interpretedn, "ndouble_interpretedn"}, {(void *)funarged1, "1funarged1"}, {(void *)tracefunarged1, "1tracefunarged1"}, {(void *)double_funarged1, "1double_funarged1"}, {(void *)funarged2, "2funarged2"}, {(void *)tracefunarged2, "2tracefunarged2"}, {(void *)double_funarged2, "2double_funarged2"}, {(void *)funargedn, "nfunargedn"}, {(void *)tracefunargedn, "ntracefunargedn"}, {(void *)double_funargedn, "ndouble_funargedn"}, {(void *)bytecoded0, "nbytecoded0"}, {(void *)tracebytecoded0, "ntracebytecoded0"}, {(void *)double_bytecoded0, "ndouble_bytecoded0"}, {(void *)bytecoded1, "1bytecoded1"}, {(void *)tracebytecoded1, "1tracebytecoded1"}, {(void *)double_bytecoded1, "1double_bytecoded1"}, {(void *)bytecoded2, "2bytecoded2"}, {(void *)tracebytecoded2, "2tracebytecoded2"}, {(void *)double_bytecoded2, "2double_bytecoded2"}, {(void *)bytecoded3, "nbytecoded3"}, {(void *)tracebytecoded3, "ntracebytecoded3"}, {(void *)double_bytecoded3, "ndouble_bytecoded3"}, {(void *)bytecodedn, "nbytecodedn"}, {(void *)tracebytecodedn, "ntracebytecodedn"}, {(void *)double_bytecodedn, "ndouble_bytecodedn"}, {(void *)byteopt1, "1byteopt1"}, {(void *)tracebyteopt1, "1tracebyteopt1"}, {(void *)double_byteopt1, "1double_byteopt1"}, {(void *)byteopt2, "2byteopt2"}, {(void *)tracebyteopt2, "2tracebyteopt2"}, {(void *)double_byteopt2, "2double_byteopt2"}, {(void *)byteoptn, "nbyteoptn"}, {(void *)tracebyteoptn, "ntracebyteoptn"}, {(void *)double_byteoptn, "ndouble_byteoptn"}, {(void *)hardopt1, "1hardopt1"}, {(void *)tracehardopt1, "1tracehardopt1"}, {(void *)double_hardopt1, "1double_hardopt1"}, {(void *)hardopt2, "2hardopt2"}, {(void *)tracehardopt2, "2tracehardopt2"}, {(void *)double_hardopt2, "2double_hardopt2"}, {(void *)hardoptn, "nhardoptn"}, {(void *)tracehardoptn, "ntracehardoptn"}, {(void *)double_hardoptn, "ndouble_hardoptn"}, {(void *)byteoptrest1, "1byteoptrest1"}, {(void *)tracebyteoptrest1, "1tracebyteoptrest1"}, {(void *)double_byteoptrest1, "1double_byteoptrest1"}, {(void *)byteoptrest2, "2byteoptrest2"}, {(void *)tracebyteoptrest2, "2tracebyteoptrest2"}, {(void *)double_byteoptrest2, "2double_byteoptrest2"}, {(void *)byteoptrestn, "nbyteoptrestn"}, {(void *)tracebyteoptrestn, "ntracebyteoptrestn"}, {(void *)double_byteoptrestn, "ndouble_byteoptrestn"}, {(void *)hardoptrest1, "1hardoptrest1"}, {(void *)tracehardoptrest1, "1tracehardoptrest1"}, {(void *)double_hardoptrest1, "1double_hardoptrest1"}, {(void *)hardoptrest2, "2hardoptrest2"}, {(void *)tracehardoptrest2, "2tracehardoptrest2"}, {(void *)double_hardoptrest2, "2double_hardoptrest2"}, {(void *)hardoptrestn, "nhardoptrestn"}, {(void *)tracehardoptrestn, "ntracehardoptrestn"}, {(void *)double_hardoptrestn, "ndouble_hardoptrestn"}, {(void *)too_many_1, "2too_many_1"}, {(void *)wrong_no_1, "nwrong_no_1"}, {(void *)too_few_2, "1too_few_2"}, {(void *)wrong_no_2, "nwrong_no_2"}, {(void *)wrong_no_0a, "1wrong_no_0a"}, {(void *)wrong_no_0b, "2wrong_no_0b"}, {(void *)wrong_no_3a, "1wrong_no_3a"}, {(void *)wrong_no_3b, "2wrong_no_3b"}, {(void *)wrong_no_na, "1wrong_no_na"}, {(void *)wrong_no_nb, "2wrong_no_nb"}, /* * As a matter of convenience I will put stream-handling functions here * too -- they are not kept in symbol headers but in stream control * blocks, but they too need careful treatment across preserve/restart. */ {(void *)char_from_illegal, "Xchar_from_illegal"}, {(void *)char_to_illegal, "Xchar_to_illegal"}, {(void *)read_action_illegal, "Xread_action_illegal"}, {(void *)write_action_illegal, "Xwrite_action_illegal"}, {(void *)char_from_terminal, "Xchar_from_terminal"}, {(void *)char_to_terminal, "Xchar_to_terminal"}, {(void *)read_action_terminal, "Xread_action_terminal"}, {(void *)write_action_terminal, "Xwrite_action_terminal"}, {(void *)char_from_file, "Xchar_from_file"}, {(void *)char_to_file, "Xchar_to_file"}, {(void *)read_action_file, "Xread_action_file"}, {(void *)read_action_output_file, "Xread_action_output_file"}, {(void *)write_action_file, "Xwrite_action_file"}, {(void *)binary_outchar, "Xbinary_outchar"}, {(void *)char_from_list, "Xchar_from_list"}, {(void *)char_to_list, "Xchar_to_list"}, {(void *)code_to_list, "Xcode_to_list"}, {(void *)read_action_list, "Xread_action_list"}, {(void *)write_action_list, "Xwrite_action_list"}, {(void *)count_character, "Xcount_character"}, {(void *)char_to_pipeout, "Xchar_to_pipeout"}, {(void *)write_action_pipe, "Xwrite_action_pipe"}, {(void *)char_from_synonym, "Xchar_from_synonym"}, {(void *)char_to_synonym, "Xchar_to_synonym"}, {(void *)read_action_synonym, "Xread_action_synonym"}, {(void *)write_action_synonym, "Xwrite_action_synonym"}, {(void *)char_from_concatenated, "Xchar_from_concatenated"}, {(void *)char_to_broadcast, "Xchar_to_broadcast"}, {(void *)read_action_concatenated, "Xread_action_concatenated"}, {(void *)write_action_broadcast, "Xwrite_action_broadcast"}, {(void *)char_from_echo, "Xchar_from_echo"}, /* * The batch here relate to function re-work that discards unwanted * extra arguments. */ {(void *)f0_as_0, "n0->0"}, {(void *)f1_as_0, "11->0"}, {(void *)f2_as_0, "22->0"}, {(void *)f3_as_0, "n3->0"}, {(void *)f1_as_1, "11->1"}, {(void *)f2_as_1, "22->1"}, {(void *)f3_as_1, "n3->1"}, {(void *)f2_as_2, "22->2"}, {(void *)f3_as_2, "n3->2"}, {(void *)f3_as_3, "n3->3"}, #ifdef CJAVA {(void *)java0, "njava0"}, {(void *)java1, "1java1"}, {(void *)java2, "2java2"}, {(void *)java3, "njava3"}, {(void *)javan, "njavan"}, #endif {NULL, "Xdummy"} }; static void adjust_vecheap(void) { nil_as_base int32 page_number, i; for (page_number = 0; page_number < vheap_pages_count; page_number++) { void *page = vheap_pages[page_number]; char *low = (char *)doubleword_align_up((int32)page); int32 len = flip_bytes(qcar(low)); char *fr; qcar(low) = len; fr = low + len; vfringe = (Lisp_Object)fr; vheaplimit = (Lisp_Object)(low + (CSL_PAGE_SIZE - 8)); low += 8; while (low < fr) { Header h = flip_bytes(*(Header *)low); *(Header *)low = h; if (is_symbol_header(h)) { Lisp_Object ss = (Lisp_Object)(low + TAG_SYMBOL); adjust(&qvalue(ss)); adjust(&qenv(ss)); adjust(&qpname(ss)); adjust(&qplist(ss)); adjust(&qfastgets(ss)); #ifdef COMMON adjust(&qpackage(ss)); #endif /* * The mess here is because when CSL is re-loaded the position of all * C-coded entrypoints will very probably have changed since the * previous run - the set of entrypoints tested for here has to be * a complete list, except for ones established via "restart.c". Note * that setup establishes entrypoints later on, so I can afford to leave * junk in the function cells of things that will be initialised then. * Thus if a "real" function pointer left over from last time happens * to look like one of the small integers used here to stand for special * built-in cases the false-hit I get here is not important. */ i = flip_bytes(ifn1(ss)); /* * Another delicacy - somebody intent on cleaning up this code may spot the * cast from a function pointer to an integer here, and decide it would be * neater to make entries_table[] contain a union type that could hide the * conversion. But that MIGHT not be good enough if sizeof(void *)==8 and * sizeof(int32)==4, but it has been arranged that all pointers used have * their 32 most significant bits all zero..... And this odd case can be * persuaded to apply on a DEC Alpha! The cast as written here really does * change data representation, but with luck does not lose any vital * information. */ if (0 < i && i < entry_table_size) { if (*entries_table[i].s != '1') { term_printf("?fn1 cell %d %s\n", i, entries_table[i].s); } ifn1(ss) = (int32)entries_table[i].p; } else ifn1(ss) = (int32)undefined1; i = flip_bytes(ifn2(ss)); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != '2') { term_printf("?fn2 cell %d %s\n", i, entries_table[i].s); } ifn2(ss) = (int32)entries_table[i].p; } else ifn2(ss) = (int32)undefined2; i = flip_bytes(ifnn(ss)); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != 'n') { term_printf("?fnn cell %d %s\n", i, entries_table[i].s); } ifnn(ss) = (int32)entries_table[i].p; } else ifnn(ss) = (int32)undefinedn; qcount(ss) = flip_bytes(qcount(ss)); low += symhdr_length; continue; } else switch (type_of_header(h)) { #ifdef COMMON case TYPE_RATNUM: case TYPE_COMPLEX_NUM: adjust((Lisp_Object *)(low+4)); adjust((Lisp_Object *)(low+8)); break; #endif case TYPE_HASH: case TYPE_SIMPLE_VEC: case TYPE_ARRAY: case TYPE_STRUCTURE: for (i=4; i<doubleword_align_up(length_of_header(h)); i+=4) adjust((Lisp_Object *)(low+i)); break; case TYPE_MIXED1: case TYPE_MIXED2: case TYPE_MIXED3: case TYPE_STREAM: for (i=4; i<16; i+=4) adjust((Lisp_Object *)(low+i)); for (; i<doubleword_align_up(length_of_header(h)); i+=4) *(Lisp_Object *)(low+i) = flip_bytes(*(Lisp_Object *)(low+i)); if (type_of_header(h) == TYPE_STREAM) { Lisp_Object ss = (Lisp_Object)(low + TAG_VECTOR); i = elt(ss, 4); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != 'X') term_printf("Stream fn %d %s\n", i, entries_table[i].s); elt(ss, 4) = (int32)entries_table[i].p; } else elt(ss, 4) = (int32)char_to_illegal; i = elt(ss, 5); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != 'X') term_printf("Stream fn %d %s\n", i, entries_table[i].s); elt(ss, 5) = (int32)entries_table[i].p; } else elt(ss, 5) = (int32)write_action_illegal; i = elt(ss, 8); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != 'X') term_printf("Stream fn %d %s\n", i, entries_table[i].s); elt(ss, 8) = (int32)entries_table[i].p; } else elt(ss, 8) = (int32)char_from_illegal; i = elt(ss, 9); if (0 < i && i < entry_table_size) { if (*entries_table[i].s != 'X') term_printf("Stream fn %d %s\n", i, entries_table[i].s); elt(ss, 9) = (int32)entries_table[i].p; } else elt(ss, 9) = (int32)read_action_illegal; } break; case TYPE_BIGNUM: case TYPE_VEC32: for (i=4; i<doubleword_align_up(length_of_header(h)); i+=4) *(Lisp_Object *)(low+i) = flip_bytes(*(Lisp_Object *)(low+i)); break; case TYPE_VEC16: for (i=4; i<doubleword_align_up(length_of_header(h)); i+=4) *(Lisp_Object *)(low+i) = flip_halfwords(*(Lisp_Object *)(low+i)); break; case TYPE_DOUBLE_FLOAT: /* * note that this conversion is triggered by the vector header, not by * the pointer to the object, so punning associated with the pnames of * un-printed gensyms will not cause any confusion. */ convert_fp_rep((void *)(low + 8L), old_fp_rep, current_fp_rep, 2); break; #ifdef COMMON case TYPE_SINGLE_FLOAT: convert_fp_rep((void *)(low + 4L), old_fp_rep, current_fp_rep, 1); break; case TYPE_LONG_FLOAT: /* Beware - if long floats move up to 3-word values the +8 here will change */ convert_fp_rep((void *)(low + 8L), old_fp_rep, current_fp_rep, 3); break; #endif case TYPE_FLOAT32: for (i=4; i<doubleword_align_up(length_of_header(h)); i+=4) convert_fp_rep((void *)(low+i), old_fp_rep, current_fp_rep, 1); break; case TYPE_FLOAT64: for (i=8; i<doubleword_align_up(length_of_header(h)); i+=8) convert_fp_rep((void *)(low+i), old_fp_rep, current_fp_rep, 2); break; default: break; } low += doubleword_align_up(length_of_header(h)); } } } static void adjust_bpsheap(void) /* * This is needed so that (e.g.) headers in the code here get byte-flipped * if necessary. Also to set codefringe. */ { nil_as_base int32 page_number; #ifdef ENVIRONMENT_VECTORS_IN_BPS_HEAP int32 i; #endif codelimit = codefringe = 0; for (page_number = 0; page_number < bps_pages_count; page_number++) { void *page = bps_pages[page_number]; char *low = (char *)doubleword_align_up((int32)page); int32 len = flip_bytes(qcar(low)); char *fr; qcar(low) = len; fr = low + len; codefringe = (Lisp_Object)fr; codelimit = (Lisp_Object)(low + 8); while (fr < low + CSL_PAGE_SIZE) { Header h = flip_bytes(*(Header *)fr); *(Header *)fr = h; #ifdef ENVIRONMENT_VECTORS_IN_BPS_HEAP switch (type_of_header(h)) { case TYPE_SIMPLE_VEC: /* This option not used at present */ for (i=4; i<doubleword_align_up(length_of_header(h)); i+=4) adjust((Lisp_Object *)(fr+i)); break; default: break; } #endif fr += doubleword_align_up(length_of_header(h)); } } } void adjust_all(void) { int32 i; Lisp_Object nil = C_nil; qheader(nil) = TAG_ODDS+TYPE_SYMBOL+SYM_SPECIAL_VAR; #ifdef COMMON qheader(nil) |= SYM_EXTERN_IN_HOME; #endif qvalue(nil) = nil; qenv(nil) = nil; ifn1(nil) = (int32)undefined1; ifn2(nil) = (int32)undefined2; ifnn(nil) = (int32)undefinedn; adjust(&(qpname(nil))); /* not a gensym */ adjust(&(qplist(nil))); adjust(&(qfastgets(nil))); #ifdef COMMON adjust(&(qpackage(nil))); #endif copy_into_nilseg(NO); for (i = first_nil_offset; i<last_nil_offset; i++) adjust(&(((Lisp_Object *)nil)[i])); copy_out_of_nilseg(NO); adjust_consheap(); adjust_vecheap(); adjust_bpsheap(); } static void *allocate_page(void) { if (pages_count == 0) fatal_error(err_no_store); return pages[--pages_count]; } #ifdef MEMORY_TRACE int32 memory_base, memory_size, memory_count, memory_records = 0; unsigned char *memory_map = NULL; static int32 memory_lowest = 0x7fffffff, memory_highest = -1; FILE *memory_file = NULL; void memory_comment(int n) { if (memory_map != NULL) { putc(0xc0 + (n & 0x3f), memory_file); putc(0, memory_file); putc(0, memory_file); } } int kk = 0; static void identify_one(void *p, int32 size, int type) { int32 i, j; int32 base = (int32)p; int32 a = 0, b = 0; int32 da = 1, db = 1; int32 click = size/0x400; switch (type) { case 0: b = click; break; case 1: db = -1; break; case 2: b = click; da = db = 2; break; case 3: da = 2; db = -2; break; case 4: db = 0; break; case 5: da = -1; db = 0; break; default: b = click; da = db = 0; break; } if (size > 256) { da *= (size/256); db *= (size/256); } memory_count |= 0x3ff; cmemory_reference(base); memory_comment(kk ? 3 : 5); kk = !kk; for (i=0; i<32; i++) { int x; memory_count |= 0x3ff; cmemory_reference(base); for (j=0; j<0x400; j++) { x = a + j*(size/8); while (x > size) x -= size; while (x < 0) x += size; cmemory_reference(base+x); x = b + j*(size/8); while (x > size) x -= size; while (x < 0) x += size; cmemory_reference(base+x); } a += da; b += db; } } static void identify_page(void *p[], int32 n, int type) { while (n != 0) { void *w = p[--n]; if (w != NULL) identify_one(w, CSL_PAGE_SIZE, type); } } void identify_page_types() { identify_page(pages, pages_count, 0); identify_page(heap_pages, heap_pages_count, 1); identify_page(vheap_pages, vheap_pages_count, 2); identify_page(bps_pages, bps_pages_count, 3); identify_page(native_pages, native_pages_count, 4); identify_one((void *)stacksegment, CSL_PAGE_SIZE, 5); identify_one((void *)nilsegment, NIL_SEGMENT_SIZE, 6); } long int car_counter; unsigned long int car_low, car_high; Cons_Cell *memory_reference(int32 p) { if (p & 0x3) { term_printf("Access to mis-aligned address %.8x\n", p); ensure_screen(); abort(); } return (Cons_Cell *)cmemory_reference(p); } char *cmemory_reference(int32 p) { int32 a = p - memory_base; #ifdef CHECK_ONLY return (char *)p; #endif if (memory_map != NULL && a >= 0 && a < memory_size) { int bit; a = a >> 2; /* Get a word address */ a = a >> 2; /* reduce to 4-word resolution */ if (memory_count >= car_counter && (unsigned long int)a >= car_low && (unsigned long int)a <= car_high) { Lisp_Object nil = C_nil; if (exception_pending()) nil = (Lisp_Object)((int32)nil ^ 1); interrupt_pending = 1; #ifdef SOFTWARE_TICKS countdown = 0; #else deal_with_tick(); /* pretend tick arrived here and now */ #endif miscflags |= HEADLINE_FLAG | MESSAGES_FLAG; car_counter = 0x7fffffff; /* Do not interrupt again */ } bit = 1 << (a & 7); a = a >> 3; if (a < memory_lowest) memory_lowest = a; if (a > memory_highest) memory_highest = a; memory_map[a] |= bit; if ((++memory_count & 0x3ff) == 0) /* Every 1024 references... */ { unsigned char *pp; int c; int32 run = 0, i; /* * I use a run-length encoded representation for the file that I write out. * Each scan-line is stored as a collection of bytes each of which indicates * the number of '0' items before the next '1' in the bit-vector. The encoding * of individual lengths is as follows: * 0 - 127 1 byte * 128 - 16K First byte has 0x80 plus 6 bits of data (+ 1 more) * 16K - 4M First byte has 0xc0 plus 6 bits of data (+ 2 more) * The byte pair (0x8n, 0x00) stands for n times 4M as a a prefix to * one of the above. This gives up to 2^28 as the max span. * The byte pair (0x80, 0x00) can be used to terminate a line. * Codes (0xcn, 0x00, 0x00) give 64 special codes that can be used * to interveave comments and annotations within the stream. */ pp = memory_map + memory_lowest; run = 8*memory_lowest; for (i=memory_lowest; i<=memory_highest; i++) { c = *pp++; if (c != 0) { bit = 1; while ((c & bit) == 0) run++, bit = bit << 1; if (run >= 0x400000) { putc(0x80 + ((run >> 22) & 0x3f), memory_file); putc(0x00, memory_file); run &= 0x3fffff; } if (run < 0x80) putc(run, memory_file); else if (run < 0x4000) { putc(0x80 + (run & 0x3f), memory_file); putc((run >> 6) & 0xff, memory_file); } else { putc(0xc0 + (run & 0x3f), memory_file); putc((run >> 6) & 0xff, memory_file); putc((run >> 14) & 0xff, memory_file); } c &= ~bit; run = 0; bit = bit << 1; while (c != 0) { while ((c & bit) == 0) run++, bit = bit << 1; putc(run, memory_file); c &= ~bit; run = 0; bit = bit << 1; } while (bit != 0x100) run++, bit = bit << 1; } else run += 8; } putc(0x80, memory_file); putc(0x00, memory_file); memory_lowest = 0x7fffffff; memory_highest = -1; memset(memory_map, 0, memory_size/32+8); memory_records++; } } return (char *)p; } #endif static char *global_handle; void *my_malloc(size_t n) { #ifdef NO_WORRY_ABOUT_MEMORY_PROBLEMS return malloc(n); #else #define EXPLICIT_FREE_AT_END_OF_RUN 1 char *r = (char *)malloc(n+32); int *p = (int *)doubleword_align_up(r); if (r == NULL) return NULL; inject_randomness((int)r); p[0] = (int)r; /* base address for free() */ p[1] = n; p[2] = 0x12345678; /* Marker word for security */ p[3] = 0x3456789a; r = (char *)&p[4]; *(int *)(r+n) = 0x87654321; *(int *)(r+n+4) = 0xcba98765; return (void *)r; #endif } #ifndef HOLD_BACK_MEMORY static char *big_chunk_start, *big_chunk_end; #endif #ifdef EXPLICIT_FREE_AT_END_OF_RUN static void my_free(void *r) { #ifdef NO_WORRY_ABOUT_MEMORY_PROBLEMS #ifndef HOLD_BACK_MEMORY char *rr = (char *)r; /* * I will not free it if the pointer is strictly inside the single big * chunk that I grabbed at the start of the run. */ if (rr > big_chunk_start && rr <= big_chunk_end) return; #endif free(r); #else int *p, *q, n; #ifndef HOLD_BACK_MEMORY char *rr = (char *)r; /* * I will not free it if the pointer is strictly inside the single big * chunk that I grabbed at the start of the run. */ if (rr > big_chunk_start && rr <= big_chunk_end) return; #endif p = (int *)((char *)r - 16); n = p[1]; if (p[2] != 0x12345678 || p[3] != 0x3456789a) { term_printf("Corruption at start of memory block %.8x: %.8x %.8x\n", (int)r, p[2], p[3]); ensure_screen(); my_exit(0); } q = (int *)((char *)r + n); if (q[0] != 0x87654321 || q[1] != 0xcba98765) { term_printf("Corruption at end of memory block %.8x: %.8x %.8x\n", (int)r, q[0], q[1]); ensure_screen(); my_exit(0); } free((void *)p[0]); #endif } #endif static void *my_malloc_1(size_t n) /* * This is a pretty silly function - it gobbles up 24Kbytes of * stack and then just calls malloc - it stuffs a pointer to the * stack-chunk into a static variable so that compilers can not * detect (I hope!) that the array remains unused. The purpose of this * is to make malloc fail if it is about to encroach on space that * should be used for stack. This is relevant on small systems where * stack and heap grow towards one another and where one space has been * grabbed by malloc it is unavailable for stack (even if it is FREEd). * The number 24000 is pretty arbitrary - but if I have 24Kbytes of stack * I will be able to do at least something. * Also this code verifies that the memory addresses returned have the * correct most significant bit. I allocate just a bit more memory than * is really needed to leave a one-word (or so) guard-band between * allocated blocks. This is necessary on some releases of an SGI C * compiler (library) where blocks of memory that are word but not * doubleword aligned can be returned. */ { char gobble_stack[24000]; char *r; int32 pun, pun1; global_handle = gobble_stack; r = (char *)my_malloc(n+8); pun = (int32)r; pun1 = (int32)(r + n); /* * I will moan if the block of memory allocated spans zero. * Note that if this does happen then something very funny is happening * about 0 cast to a pointer (i.e. a NULL pointer) since NULL is supposed * not to be valid as an address (?) but appears to be within the address * range of the block of store just allocated. */ if ((pun ^ pun1) < 0) fatal_error(err_mem_spans_zero); /* * Now if I get a block with the "wrong" top bit I will just return NULL * to suggest that no more memory was available - CSL can then proceed * or fail as it sees fit. */ #ifdef ADDRESS_SIGN_UNKNOWN /* * For dynamic address sign I should not test the address sign on the * first call - instead I just remember what it was. On subsequent calls * I will check it. */ if (nilsegment != NULL) { if ((pun + address_sign) < 0) return NULL; /* fatal_error(err_top_bit); */ } else address_sign = pun & 0x80000000; #else #ifdef ADDRESSES_HAVE_TOP_BIT_SET if (pun > 0) return NULL; /* fatal_error(err_top_bit); */ #else if (pun < 0) return NULL; /* fatal_error(err_top_bit); */ #endif #endif return (void *)r; } static void *my_malloc_2(size_t n) /* * Rather like my_malloc_1(), but does NOT check the sign bit of the * returned pointer. Provided as a place to put hooks to check memory * allocation problems. */ { char gobble_stack[24000]; char *r; global_handle = gobble_stack; r = (char *)my_malloc(n+8); return (void *)r; } static void init_heap_segments(double store_size) /* * This function just makes nil and the pool of page-frames available */ { char *memfile = "memory.use"; /* For memory statistics etc */ pages = (void **)my_malloc_2(MAX_PAGES*sizeof(void *)); heap_pages = (void **)my_malloc_2(MAX_PAGES*sizeof(void *)); vheap_pages = (void **)my_malloc_2(MAX_PAGES*sizeof(void *)); bps_pages = (void **)my_malloc_2(MAX_BPS_PAGES*sizeof(void *)); native_pages = (void **)my_malloc_2(MAX_NATIVE_PAGES*sizeof(void *)); #ifndef NO_COPYING_GC new_heap_pages = (void **)my_malloc_2(MAX_PAGES*sizeof(void *)); new_vheap_pages = (void **)my_malloc_2(MAX_PAGES*sizeof(void *)); new_bps_pages = (void **)my_malloc_2(MAX_BPS_PAGES*sizeof(void *)); new_native_pages = (void **)my_malloc_2(MAX_NATIVE_PAGES*sizeof(void *)); #endif pair_c = (unsigned char *)my_malloc_2(CODESIZE); /* * The next line is utterly unsatisfactory at present */ char_stack = (unsigned char *)my_malloc_2(CSL_PAGE_SIZE /*CODESIZE*/); pair_prev = (unsigned short int *) my_malloc_2(CODESIZE*sizeof(unsigned short int)); if (pages == NULL || #ifndef NO_COPYING_GC new_heap_pages == NULL || new_vheap_pages == NULL || new_bps_pages == NULL || new_native_pages == NULL || #endif heap_pages == NULL || vheap_pages == NULL || bps_pages == NULL || native_pages == NULL || pair_c == NULL || char_stack == NULL || pair_prev == NULL) fatal_error(err_no_store); { #ifdef COMMON int32 free_space = 8000000; /* Try 8 Mbyte as a default heap size */ #else int32 free_space = 8000000; /* Try 8 Mbyte as a default heap size */ #endif int32 request = (int32)store_size; if (request != 0) free_space = 1024*request; free_space = free_space/(CSL_PAGE_SIZE+4); if (free_space > MAX_PAGES) free_space = MAX_PAGES; pages_count = heap_pages_count = vheap_pages_count = bps_pages_count = native_pages_count = 0; native_fringe = 0; /* * I grab memory using a function called my_malloc_1(), which verifies that * all addresses used in the heap have the same top bit. The very first time * it is called nilsegment will be NULL - that time it does less checking. */ nilsegment = NULL; #ifdef HOLD_BACK_MEMORY /* * Try to grab a bit extra since I will then hand it back. This version * of the code MUST be used on machines where size_t (the argument to * malloc) denotes a 16-bit value. */ free_space += HOLD_BACK_MEMORY; /* * I should wait until later to grab space, I suspect... I.e. not pre-allocate * pages for the heap now at the start of the run but wait until the garbage * collector tells me that enlarging the CSL heap would be a good idea. * What I do at present is to allocate a reasonable amount of memory here, * and on small machines I will leave it at that. On large machines * I will allocate more space (maybe) during garbage collection. I use * the HOLD_BACK_MEMORY and (init_flags & INIT_EXPANDABLE) to control things * in a finer way. */ nilsegment = (Lisp_Object *)my_malloc_1(NIL_SEGMENT_SIZE); #ifdef COMMON /* * NB here that NIL is tagged as a CONS not as a symbol. That means that * qheader(nil) is BEFORE the place that might normally have been the start * of the segment, so I add 8 to preserve alignment but to leave room for * the header. I have made NIL_SEGMENT_SIZE large enough by a useful margin * (in externs.h) so I should not run off th eend of it. */ C_nil = doubleword_align_up(nilsegment) + TAG_CONS + 8; #else C_nil = doubleword_align_up(nilsegment) + TAG_SYMBOL; #endif while (pages_count < free_space) { /* * I get 8 bytes more than seems necessary because I will need to * align my page frames up to a doubleword boundary, and that can * potentially waste 7 bytes. */ void *page = (void *)my_malloc_1((size_t)(CSL_PAGE_SIZE+8)); if (page == NULL) break; pages[pages_count++] = page; } /* * Now release some memory for the operating system to play with. This * is a bit crude, in that it can "waste" precious space on small * machines, but on at least the Acorn Archimedes (RISCOS) and the * Macintosh (system 7) it appears to be VITAL. */ { int32 i; for (i=0; i<HOLD_BACK_MEMORY; i++) if (pages_count != 0) my_free(pages[--pages_count]); } #else /* HOLD_BACK_MEMORY */ #ifdef DEBUG if (sizeof(size_t) < 4 && PAGE_BITS > 16) { fprintf(stderr, "This machine needs configuration with HOLD_BACK_MEMORY\n"); fprintf(stderr, "and PAGE_BITS <= 16. Change machine.h and recompile\n"); my_exit(1); } #endif { size_t n = (size_t)(NIL_SEGMENT_SIZE+free_space*(CSL_PAGE_SIZE+8)); /* * I try to get the whole of the initial hunk of memory that I need in * one gulp since that (maybe) gives me the best chance to obtain all * the memory in just one half of my address space. */ char *pool = (char *)my_malloc_1(n); /* * I get 8 bytes more than seems necessary because I will need to * align my page frames up to a doubleword boundary, and that can * potentially waste 7 bytes. */ if (pool != NULL) { big_chunk_start = (char *)pool; big_chunk_end = big_chunk_start + (n-1); #ifdef __mips__ /* * Some versions of the C compiler on 64-bit SGI machines leave * big_chunk_start and _end both zero despite the above. The effect is * unimportant until the end of a run of CSL, when the test at the start * of my_free misbehaves and a report is generated about memory "corruption". * With LUCK the extra reference to the variables via the call to the * dummy function will cause the compiler to behave in a more conservative * manner and get things correct. The problem has not been seen on * 32-bit SGI systems, but the extra dummy function call is not very * expensive so can be tolerated in such cases. * ACN: August 1996 */ dummy_function_call("64-bit SGI machines", big_chunk_start, big_chunk_end); #endif #ifdef MEMORY_TRACE memory_base = (int32)pool; memory_size = n; memory_count = 0; memory_map = (unsigned char *)malloc(n/32 + 16); if (memory_map != 0) { memset(memory_map, 0, n/32+8); memory_file = fopen(memfile, "wb"); if (memory_file == NULL) { free(memory_map); memory_map = 0; } else { n = n/32 + 8; putc(0, memory_file); putc(0, memory_file); putc(0, memory_file); /* 3 bytes to overwrite later on */ putc(n, memory_file); putc(n>>8, memory_file); putc(n>>16, memory_file); memory_comment(2); /* startup code */ init_flags &= ~INIT_EXPANDABLE; } } #endif nilsegment = (Lisp_Object *)pool; pool = pool + NIL_SEGMENT_SIZE; #ifdef COMMON /* NB here that NIL is tagged as a CONS not as a symbol */ C_nil = doubleword_align_up(nilsegment) + TAG_CONS + 8; #else C_nil = doubleword_align_up(nilsegment) + TAG_SYMBOL; #endif /* * If at the end of the run I am going to free some space I had better not * free these pages. When I free the nilsegment they all get discarded at * once. */ while (pages_count < free_space) { void *page = (void *)&pool[pages_count*(CSL_PAGE_SIZE+8)]; pages[pages_count++] = page; } } } #endif } if (nilsegment != NULL && pages_count > 0) { if (stack_segsize != 1) { stacksegment = (Lisp_Object *)my_malloc(stack_segsize*CSL_PAGE_SIZE + 8); if (stacksegment == NULL) fatal_error(err_no_store); } stacksegment = (Lisp_Object *)pages[--pages_count]; } else fatal_error(err_no_store); MD5_Update((unsigned char *)memfile, 8); /* * The stack does not need to be doubleword aligned, but it does need * to be word aligned (otherwise certain back-pointers in the garbage * collector give trouble), so I fix it up here. Note that stacksegment * remains pointing at the original base so that I can free() it later. */ stackbase = (Lisp_Object *)doubleword_align_up((int32)stacksegment); } #ifdef EXPLICIT_FREE_AT_END_OF_RUN /* * In general I will let CSL exit without bothering to free up all the * memory that it allocated - that job can be left (to the extent that * it is needed at all) to the run-time system. But if for some reason * you really mind about such things here is some code to do it for you... */ static void abandon(void *p[], int32 n) { while (n != 0) { void *w = p[--n]; /* * The test here that avoids calling free on a NULL pointer is * certainly not needed with an ANSI compliant library - but * rumour has it that many Unix libraries are unkind in this * respect, and the test is pretty cheap... */ if (w != NULL) my_free(w); } } #endif void drop_heap_segments(void) { #ifdef MEMORY_TRACE identify_page_types(); #endif #ifdef EXPLICIT_FREE_AT_END_OF_RUN abandon(pages, pages_count); abandon(heap_pages, heap_pages_count); abandon(vheap_pages, vheap_pages_count); abandon(bps_pages, bps_pages_count); abandon(native_pages, native_pages_count); my_free(stacksegment); my_free(nilsegment); #endif #ifdef MEMORY_TRACE fseek(memory_file, 0L, SEEK_SET); putc(memory_records & 0xff, memory_file); putc((memory_records>>8) & 0xff, memory_file); putc((memory_records>>16) & 0xff, memory_file); fclose(memory_file); memory_file = NULL; memory_map = NULL; #endif } static char *find_checksum(char *name, int32 len, const setup_type *p) { char *n; while (p->name != NULL) p++; n = (char *)p->one; if (strlen(n) == len && memcmp(name, n, len) == 0) return (char *)p->two; else return NULL; } static Lisp_Object MS_CDECL Lcheck_c_code(Lisp_Object nil, int nargs, ...) { Lisp_Object name, lc1, lc2, lc3; int32 c1=-1, c2=-1, c3=-1; long int x1=-2, x2=-2, x3=-2; int32 len; va_list a; char *p; char *sname; argcheck(nargs, 4, "check-c-code"); va_start(a, nargs); name = va_arg(a, Lisp_Object); lc1 = va_arg(a, Lisp_Object); lc2 = va_arg(a, Lisp_Object); lc3 = va_arg(a, Lisp_Object); va_end(a); if (!is_vector(name) || type_of_header(vechdr(name)) != TYPE_STRING || !is_fixnum(lc1) || !is_fixnum(lc2) || !is_fixnum(lc3)) return aerror1("check-c-code", name); c1 = int_of_fixnum(lc1); c2 = int_of_fixnum(lc2); c3 = int_of_fixnum(lc3); sname = &celt(name, 0); len = length_of_header(vechdr(name)) - 4; /* * trace_printf("+++ Checking %.*s %d %d %d\n", * (int)len, sname, c1, c2, c3); */ p = find_checksum(sname, len, u01_setup); if (p == NULL) p = find_checksum(sname, len, u02_setup); if (p == NULL) p = find_checksum(sname, len, u03_setup); if (p == NULL) p = find_checksum(sname, len, u04_setup); if (p == NULL) p = find_checksum(sname, len, u05_setup); if (p == NULL) p = find_checksum(sname, len, u06_setup); if (p == NULL) p = find_checksum(sname, len, u07_setup); if (p == NULL) p = find_checksum(sname, len, u08_setup); if (p == NULL) p = find_checksum(sname, len, u09_setup); if (p == NULL) p = find_checksum(sname, len, u10_setup); if (p == NULL) p = find_checksum(sname, len, u11_setup); if (p == NULL) p = find_checksum(sname, len, u12_setup); if (p == NULL) return aerror1("check-c-code", name); if (sscanf(p, "%ld %ld %ld", &x1, &x2, &x3) != 3) return aerror("check-c-code"); if (c1 == x1 && c2 == x2 && c3 == x3) return onevalue(nil); err_printf("\n+++++ C code and environment files not compatible\n"); err_printf("please check, re-compile and try again\n"); return aerror("check-c-code"); } static setup_type const restart_setup[] = /* * things that are in modules that do not define enough Lisp entrypoints * to be worth giving separate entry-tables. */ { {"check-c-code", wrong_no_na, wrong_no_nb, Lcheck_c_code}, {"define-in-module", Ldefine_in_module, too_many_1, wrong_no_1}, {"modulep", Lmodule_exists, too_many_1, wrong_no_1}, {"start-module", Lstart_module, too_many_1, wrong_no_1}, {"write-module", Lwrite_module, too_many_1, wrong_no_1}, {"copy-module", Lcopy_module, too_many_1, wrong_no_1}, {"delete-module", Ldelete_module, too_many_1, wrong_no_1}, {"load-module", Lload_module, too_many_1, wrong_no_1}, {"list-modules", wrong_no_na, wrong_no_nb, Llist_modules}, {"writable-libraryp", Lwritable_libraryp, too_many_1, wrong_no_1}, {"library-members", Llibrary_members, too_many_1, Llibrary_members0}, {"startup-banner", Lbanner, too_many_1, wrong_no_1}, #ifdef HELP_SYSTEM {"write-help-module", too_few_2, Lwrite_help_module, wrong_no_2}, {"help", Lhelp, Lhelp_2, Lhelp_n}, {"?", Lhelp, too_many_1, wrong_no_1}, #endif {"set-help-file", too_few_2, Lset_help_file, wrong_no_2}, {"mapstore", Lmapstore, too_many_1, Lmapstore0}, {"verbos", Lverbos, too_many_1, wrong_no_1}, #ifdef COMMON {"errorset", Lerrorset1, Lerrorset2, Lerrorsetn}, {"gc", Lgc, too_many_1, Lgc0}, #else {"errorset", Lerrorset1, Lerrorset2, Lerrorsetn}, {"reclaim", Lgc, too_many_1, Lgc0}, #endif {NULL, 0, 0, 0} }; static void create_symbols(setup_type const s[], CSLbool restartp) { int i; for (i=0; s[i].name != NULL; i++) make_symbol(s[i].name, restartp, s[i].one, s[i].two, s[i].n); } static int32 defined_symbols; static void count_symbols(setup_type const s[]) { int i; for (i=0; s[i].name != NULL; i++) defined_symbols++; } static void set_up_variables(CSLbool restartp); static void warm_setup() { /* * Here I need to read in the bulk of the checkpoint file. */ Lisp_Object nil = C_nil; int32 i; Cfread((char *)&heap_pages_count, sizeof(heap_pages_count)); Cfread((char *)&vheap_pages_count, sizeof(vheap_pages_count)); Cfread((char *)&bps_pages_count, sizeof(bps_pages_count)); heap_pages_count = flip_bytes(heap_pages_count); vheap_pages_count = flip_bytes(vheap_pages_count); bps_pages_count = flip_bytes(bps_pages_count); /* * Here I want to arrange to have at least one free page after re-loading * an image. If malloc can give me enough I grab it here. Note that I do * not yet know how many pages will be needed for hard code, which is a * bit of a nuisance! */ i = heap_pages_count+vheap_pages_count+ bps_pages_count+1 - pages_count; #ifdef MEMORY_TRACE if (i > 0) fatal_error(err_no_store); #else while (i-- > 0) { void *page = my_malloc_1((size_t)(CSL_PAGE_SIZE + 8)); if (page == NULL) fatal_error(err_no_store); else pages[pages_count++] = page; } #endif { char dummy[16]; Cfread(dummy, 8); } #ifdef MEMORY_TRACE memory_comment(6); /* vector heap */ #endif for (i=0; i<vheap_pages_count; i++) { int32 p; vheap_pages[i] = allocate_page(); p = doubleword_align_up((int32)vheap_pages[i]); Cfread((char *)p, CSL_PAGE_SIZE); } { char dummy[16]; Cfread(dummy, 8); } #ifdef MEMORY_TRACE memory_comment(5); /* cons heap */ #endif for (i=0; i<heap_pages_count; i++) { int32 p; heap_pages[i] = allocate_page(); p = doubleword_align_up((int32)heap_pages[i]); Cfread((char *)p, CSL_PAGE_SIZE); } { char dummy[16]; Cfread(dummy, 8); } #ifdef MEMORY_TRACE memory_comment(14); /* BPS heap */ #endif for (i=0; i<bps_pages_count; i++) { int32 p; bps_pages[i] = allocate_page(); p = doubleword_align_up((int32)bps_pages[i]); Cfread((char *)p, CSL_PAGE_SIZE); } { char endmsg[32]; Cfread(endmsg, 24); /* the termination record */ /* * Although I check here I will not make the system crash if I see an * error - at least until I have tested things and found this test * properly reliable. */ #ifdef COMMON if (strncmp(endmsg, "\n\nEnd of CCL dump file\n\n", 24) != 0) #else if (strncmp(endmsg, "\n\nEnd of CSL dump file\n\n", 24) != 0) #endif { term_printf("\n+++ Bad end record |%s|\n", endmsg); } } /* * There is a delicacy here - Cfread uses Iread to read chunks of * data from the real input file, but it never goes beyond the recorded * end of file mark. This buffering ensures that at this stage any * pending part-word of data will have been read - this because the * read buffer used is a multiple of 4 bytes long. This point matters * with regard to checksum validation on these files. */ crypt_active = -1; /* Have read all of the initial image file */ IcloseInput(YES); #ifdef MEMORY_TRACE memory_comment(9); /* adjusting */ #endif inject_randomness((int)clock()); adjust_all(); #ifdef MEMORY_TRACE memory_comment(12); /* remainder of setup */ #endif eq_hash_tables = eq_hash_table_list; equal_hash_tables = equal_hash_table_list; eq_hash_table_list = equal_hash_table_list = nil; { Lisp_Object qq; for (qq = eq_hash_tables; qq!=nil; qq=qcdr(qq)) rehash_this_table(qcar(qq)); for (qq = equal_hash_tables; qq!=nil; qq=qcdr(qq)) rehash_this_table(qcar(qq)); } gensym_ser = flip_bytes(gensym_ser); print_precision = flip_bytes(print_precision); miscflags = flip_bytes(miscflags); current_modulus = flip_bytes(current_modulus); fastget_size = flip_bytes(fastget_size); package_bits = flip_bytes(package_bits); set_up_functions(1); set_up_variables(1); /* * Now I have closed the main heap image, but if there is any hard machine * code available for this architecture I should load it. When I do this * the main heap has been loaded and relocated and all the entrypoints * in it that relate to kernel code have been inserted. */ if (native_code_tag != 0) /* Not worth trying if none available */ { if (!IopenRoot(NULL, -native_code_tag)) { int32 nn = Igetc() & 0xff; nn = nn + ((Igetc() & 0xff) << 8); native_pages_count = nn; for (i=0; i<native_pages_count; i++) { int32 p; /* * Because I did not know earlier how many pages would be needed here I * may not have overall enough. So I expand my heap (if possible) * when things start to look tight here. */ if (pages_count <= 1) { void *page = my_malloc_1((size_t)(CSL_PAGE_SIZE + 8)); if (page == NULL) fatal_error(err_no_store); else pages[pages_count++] = page; } native_pages[i] = allocate_page(); p = (int32)native_pages[i]; p = doubleword_align_up(p); fread_count = 0; Cfread((char *)p, CSL_PAGE_SIZE); native_fringe = *(int32 *)p; relocate_native_code((unsigned char *)p, native_fringe); } IcloseInput(YES); } } /* * Finally with a warm start I must instate the definitions of all functions * that may have been compiled into hard code on this platform. Functions that * may be hard-coded on SOME platform may also be in a mess and will have * a byte-coded definition put back in place at this point. Observe that this * happens AFTER the system has otherwise been loaded and relocated. */ { Lisp_Object f_list = native_code, byte_code_def; do_not_kill_native_code = 1; while (f_list != nil) { Lisp_Object w, fn, defs; int32 nargs; int instated_something = 0; byte_code_def = nil; w = qcar(f_list); f_list = qcdr(f_list); fn = qcar(w); w = qcdr(w); nargs = int_of_fixnum(qcar(w)); defs = qcdr(w); while (defs != nil) { int32 n, tag, type, page, off; void *e; w = qcar(defs); defs = qcdr(defs); n = int_of_fixnum(qcar(w)); w = qcdr(w); tag = (n >> 20) & 0xff; type = (n >> 18) & 0x3; page = n & 0x3ffff; if (tag == 0) { byte_code_def = qcdr(w); continue; } if (tag != native_code_tag) continue; /* Not for me today */ instated_something = 1; off = int_of_fixnum(qcar(w)); w = qcdr(w); /* * Now fn should be a symbol, the function to be defined. w is the thing to go * into its environment cell. page and off define a location in the hard * code space and type tells me which of the 3 function cells to put that in. * * I will not (yet) mess around with the removal of C definition * flags and all the other delicacies. Note that this means attempts to * redefine built-in functions with user-provided native code varients * may cause all sorts of muddle! Please do not try it, but when you * do (!) tell me and I will attempt to work out what ought to happen. * Maybe it will all be OK provided that a consistent byte-code definition * is in place before any native code gets generated. */ page = (int32)native_pages[page]; page = doubleword_align_up(page); e = (void *)((char *)page + off); switch (type) { /* * Warning - I just support nargs being a simple integer here, with no * fancy encoding for variable numbers of args or &rest args etc. I think * that for native code all such cases need to be dealt with via non-zero * type code so that the 3 individual function cells get filled in one * by 1. */ case 0: switch (nargs) { case 0: set_fns(fn, wrong_no_0a, wrong_no_0b, (n_args *)e); break; case 1: set_fns(fn, (one_args *)e, too_many_1, wrong_no_1); break; case 2: set_fns(fn, too_few_2, (two_args *)e, wrong_no_2); break; case 3: set_fns(fn, wrong_no_3a, wrong_no_3b, (n_args *)e); break; default:set_fns(fn, wrong_no_na, wrong_no_nb, (n_args *)e); break; } break; /* * A non-zero type field allows me to fill in just one of the function cells. * Note that I ought to arrange to get ALL of them filled in somehow, either * by using type=0 or by using all three of type = 1,2,3. */ case 1: ifn1(fn) = (int32)e; break; case 2: ifn2(fn) = (int32)e; break; case 3: ifnn(fn) = (int32)e; break; } qenv(fn) = w; } if (!instated_something && byte_code_def != nil) { w = cons(fixnum_of_int(nargs), byte_code_def); /* * You can look at this bit of code and moan, saying "What happens if * the call to CONS causes a garbage collection?". Well I have this policy * that garbage collection attempts during startup should be thought of * as fatal, and that the user should give enough memory to make it possible * to get at least started. I hope that I do not generate much litter here * and in other places within the startup code. Not thinking about GC * safety leaves the code neater and easier to work with. */ Lsymbol_set_definition(nil, fn, w); } } do_not_kill_native_code = 0; } inject_randomness((int)clock()); } static void cold_setup() { Lisp_Object nil = C_nil; void *p; p = vheap_pages[vheap_pages_count++] = allocate_page(); vfringe = (Lisp_Object)(8 + (char *)doubleword_align_up((int32)p)); vheaplimit = (Lisp_Object)((char *)vfringe + (CSL_PAGE_SIZE - 16)); p = heap_pages[heap_pages_count++] = allocate_page(); heaplimit = doubleword_align_up((int32)p); fringe = (Lisp_Object)((char *)heaplimit + CSL_PAGE_SIZE); heaplimit = (Lisp_Object)((char *)heaplimit + SPARE); codelimit = codefringe = 0; /* no BPS to start with */ miscflags = 3; qplist(nil) = nil; qfastgets(nil) = nil; qenv(nil) = nil; /* points to self in undefined case */ ifn1(nil) = (int32)undefined1; ifn2(nil) = (int32)undefined2; ifnn(nil) = (int32)undefinedn; qheader(nil) = TAG_ODDS+TYPE_SYMBOL+SYM_SPECIAL_VAR; qvalue(nil) = nil; #ifdef COMMON qpname(nil) = make_string("NIL"); #else qpname(nil) = make_string("nil"); #endif qcount(nil) = 0; exit_tag = exit_value = nil; exit_reason = UNWIND_NULL; eq_hash_tables = equal_hash_tables = nil; current_package = nil; qvalue(nil) = getvector_init(sizeof(Package), nil); #ifdef COMMON qpackage(nil) = qvalue(nil); /* For sake of restart code */ all_packages = ncons(qvalue(nil)); #endif packhdr_(CP) = TYPE_STRUCTURE + (packhdr_(CP) & ~header_mask); #ifdef COMMON packname_(CP) = make_string("LISP"); #endif /* * The size chosen here is only an initial size - the hash table in a package * can grow later on if needbe - but I ought to ensure that the initial * size is big enough for the built-in symbols that Lisp creates in * this restart code. The size must be a power of 2. */ #define INIT_OBVECI_SIZE 4096 packint_(CP) = getvector_init(INIT_OBVECI_SIZE+4, fixnum_of_int(0)); packvint_(CP) = fixnum_of_int(1); packflags_(CP) = fixnum_of_int(++package_bits); #ifdef COMMON /* * Common Lisp also has "external" symbols to allow for... */ #define INIT_OBVECX_SIZE 4096 packnint_(CP) = fixnum_of_int(0); packext_(CP) = getvector_init(INIT_OBVECX_SIZE+4, fixnum_of_int(0)); packvext_(CP) = fixnum_of_int(1); packnext_(CP) = fixnum_of_int(1); /* Allow for nil */ { int i = (int)(hash_lisp_string(qpname(nil)) & (INIT_OBVECX_SIZE/4 - 1)); elt(packext_(CP), i) = nil; } #else packnint_(CP) = fixnum_of_int(1); /* Allow for nil */ { int i = (int)(hash_lisp_string(qpname(nil)) & (INIT_OBVECI_SIZE/4 - 1)); elt(packint_(CP), i) = nil; } #endif gensym_ser = 0; print_precision = 15; current_modulus = 1; fastget_size = 32; package_bits = 0; unset_var = nil; /* * there had better not be a need for garbage collection here... * ... or elsewhere in setup, since the world is not yet put together. * Ditto interrupts. */ #define boffo_size 256 boffo = getvector(TAG_VECTOR, TYPE_STRING, boffo_size+4); memset((void *)((char *)boffo + (4 - TAG_VECTOR)), '@', boffo_size); #ifndef COMMON if (current_package == nil) { current_package = make_undefined_symbol("*package*"); qheader(current_package) |= SYM_SPECIAL_VAR; lisp_package = qvalue(current_package) = qvalue(nil); qvalue(nil) = nil; } #else /* * The next line has hidden depths. When it is obeyed during cold start * the C variable current_package has the value nil, hence make_symbol * looks in the value cell of nil to find the package to intern wrt. Once * this has been done I can put nil back how it ought to have been! */ current_package = make_undefined_symbol("*package*"); qheader(current_package)|= SYM_SPECIAL_VAR; lisp_package = qvalue(current_package) = qpackage(nil); qvalue(nil) = nil; /* Whew! */ #endif B_reg = nil; /* safe for GC */ unset_var = make_undefined_symbol("~indefinite-value~"); qheader(unset_var) |= SYM_SPECIAL_VAR; qvalue(unset_var) = unset_var; Lunintern(nil, unset_var); /* * Now in some minor sense the world is in a self-consistent state */ lisp_true = make_undefined_symbol("t"); qheader(lisp_true) |= SYM_SPECIAL_VAR; qvalue(lisp_true) = lisp_true; savedef = make_undefined_symbol("*savedef"); comma_symbol = make_undefined_symbol("~comma"); comma_at_symbol = make_undefined_symbol("~comma-at"); lambda = make_undefined_symbol("lambda"); funarg = make_undefined_symbol("funarg"); cfunarg = make_undefined_symbol("cfunarg"); opt_key = make_undefined_symbol("&optional"); rest_key = make_undefined_symbol("&rest"); #ifdef COMMON key_key = make_undefined_symbol("&key"); allow_other_keys = make_undefined_symbol("&allow-other-keys"); aux_key = make_undefined_symbol("&aux"); #endif work_symbol = make_undefined_symbol("~magic-internal-symbol~"); Lunintern(nil, work_symbol); #ifndef COMMON packid_(CP) = make_undefined_symbol("package"); #else package_symbol = make_undefined_symbol("package"); packid_(CP) = package_symbol; #endif macroexpand_hook = make_undefined_symbol("*macroexpand-hook*"); qheader(macroexpand_hook) |= SYM_SPECIAL_VAR; evalhook = make_undefined_symbol("*evalhook*"); qheader(evalhook) |= SYM_SPECIAL_VAR; qvalue(evalhook) = nil; applyhook = make_undefined_symbol("*applyhook*"); qheader(applyhook) |= SYM_SPECIAL_VAR; qvalue(applyhook) = nil; #ifdef COMMON keyword_package = make_undefined_symbol("*keyword-package*"); qheader(keyword_package) |= SYM_SPECIAL_VAR; qvalue(keyword_package) = make_package(make_string("KEYWORD")); err_table = make_undefined_symbol("*ERROR-MESSAGE*"); #else err_table = make_undefined_symbol("*error-messages*"); #endif qheader(err_table) |= SYM_SPECIAL_VAR; qvalue(err_table) = nil; #ifdef COMMON #define make_keyword(name) \ Lintern_2(nil, make_string(name), qvalue(keyword_package)) internal_symbol = make_keyword("INTERNAL"); external_symbol = make_keyword("EXTERNAL"); inherited_symbol = make_keyword("INHERITED"); allow_key_key = make_keyword("ALLOW-OTHER-KEYS"); #else #define make_keyword(name) make_undefined_symbol(name) #endif gensym_base = make_string("G"); #ifdef COMMON special_symbol = make_undefined_symbol("special"); expand_def_symbol = make_undefined_symbol("expand-definer"); format_symbol = make_undefined_symbol("format"); string_char_sym = make_undefined_symbol("string-char"); cl_symbols = make_undefined_symbol("*cl-symbols*"); /* * cl_symbols has to be at least a vector or else I can not * read in the Lisp file that sets its proper value... */ qvalue(cl_symbols) = getvector_init(8<<2, nil); features_symbol = make_undefined_symbol("*features*"); qheader(cl_symbols) |= SYM_SPECIAL_VAR; qheader(features_symbol) |= SYM_SPECIAL_VAR; { Lisp_Object w; #define make_constant(name, value) \ w = make_undefined_symbol(name); \ qheader(w) |= SYM_SPECIAL_VAR; \ qvalue(w) = value; make_constant("most-positive-fixnum", fixnum_of_int(0x07ffffff)); make_constant("most-negative-fixnum", fixnum_of_int(0xf8000000)); /* #undef TYPE_LONG_FLOAT */ /* #define TYPE_LONG_FLOAT TYPE_DOUBLE_FLOAT */ make_constant("pi", make_boxfloat(3.141592653589793238, TYPE_LONG_FLOAT)); } #endif append_symbol = make_undefined_symbol("append"); raise_symbol = make_undefined_symbol("*raise"); lower_symbol = make_undefined_symbol("*lower"); echo_symbol = make_undefined_symbol("*echo"); /* * I think that having a built-in symbol called *hankaku even if Kanji support * is not otherwise present is not too severe a problem, and making the * symbol present always will help keep image files re-usable from one * version of CSL to another. */ hankaku_symbol = make_undefined_symbol("*hankaku"); comp_symbol = make_undefined_symbol("*comp"); compiler_symbol = make_undefined_symbol("compile"); native_symbol = make_undefined_symbol("native-compile"); traceprint_symbol = make_undefined_symbol("trace-print"); loadsource_symbol = make_symbol("load-source", 0, Lload_source, too_many_1, wrong_no_1); prinl_symbol = make_symbol("prinl", 0, Lprin, too_many_1, wrong_no_1); emsg_star = make_undefined_symbol("emsg*"); redef_msg = make_undefined_symbol("*redefmsg"); expr_symbol = make_undefined_symbol("expr"); fexpr_symbol = make_undefined_symbol("fexpr"); macro_symbol = make_undefined_symbol("macro"); break_function = make_undefined_symbol("*break-loop*"); qheader(raise_symbol) |= SYM_SPECIAL_VAR; qheader(lower_symbol) |= SYM_SPECIAL_VAR; qheader(echo_symbol) |= SYM_SPECIAL_VAR; qheader(hankaku_symbol) |= SYM_SPECIAL_VAR; qheader(comp_symbol) |= SYM_SPECIAL_VAR; qheader(emsg_star) |= SYM_SPECIAL_VAR; qheader(redef_msg) |= SYM_SPECIAL_VAR; qheader(break_function) |= SYM_SPECIAL_VAR; qvalue(break_function) = nil; qheader(loadsource_symbol) |= SYM_SPECIAL_VAR; qvalue(loadsource_symbol) = nil; { Lisp_Object common = make_undefined_symbol("common-lisp-mode"); qheader(common) |= SYM_SPECIAL_VAR; #ifdef COMMON qvalue(common) = lisp_true; qvalue(raise_symbol) = lisp_true; qvalue(lower_symbol) = nil; #else qvalue(common) = nil; qvalue(raise_symbol) = nil; qvalue(lower_symbol) = lisp_true; #endif } qvalue(echo_symbol) = nil; qvalue(hankaku_symbol) = nil; qvalue(comp_symbol) = nil; qvalue(emsg_star) = nil; qvalue(redef_msg) = lisp_true; sys_hash_table = Lmkhash(nil, 3, fixnum_of_int(5), fixnum_of_int(2), nil); get_counts = Lmkhash(nil, 3, fixnum_of_int(5), fixnum_of_int(0), nil); /* * I make the vector that can hold the names used for "fast" get tags big * enough for the largest possible number. */ fastget_names = getvector_init((MAX_FASTGET_SIZE+2)<<2, SPID_NOPROP); /* * The next bit is a horrid fudge, used in read.c (function orderp) to * support REDUCE. It ensures that the flag 'noncom is subject to an * optimisation for flag/flagp that allows it to be tested for using a * simple bit-test. This MUST use entry zero (coded as 1 here!). * Also I insist that 'lose be the second fastget thing! */ { Lisp_Object nc = make_undefined_symbol("noncom"); qheader(nc) |= (1L << SYM_FASTGET_SHIFT); elt(fastget_names, 0) = nc; nc = make_undefined_symbol("lose"); qheader(nc) |= (2L << SYM_FASTGET_SHIFT); elt(fastget_names, 1) = nc; } /* * I create the stream objects just once at cold-start time, but every time I * restart I will fill in their components in the standard way again. */ lisp_work_stream = make_stream_handle(); lisp_terminal_io = make_stream_handle(); lisp_standard_output = make_stream_handle(); lisp_standard_input = make_stream_handle(); lisp_error_output = make_stream_handle(); lisp_trace_output = make_stream_handle(); lisp_debug_io = make_stream_handle(); lisp_query_io = make_stream_handle(); inject_randomness((int)clock()); set_up_functions(0); set_up_variables(0); } void set_up_functions(CSLbool restartp) { /* * All symbols that have a pointer to C code in their function cell must * be set up whether we are in a warm OR a cold start state, because the * actual addresses associated with C entrypoints will vary from version * to version of the binary of the system. */ int i; nil_as_base #ifdef COMMON /* * In Common Lisp mode it could be that the user had something other than the * LISP package active when the image was saved. But I want all the symbols * that I create or restore here to be in the LISP (or sometimes keyword) * package. So I temporarily reset the package here... */ Lisp_Object saved_package = CP; CP = find_package("LISP", 4); #endif function_symbol = make_symbol("function", restartp, function_fn, bad_special2, bad_specialn); qheader(function_symbol)|= SYM_SPECIAL_FORM; quote_symbol = make_symbol("quote", restartp, quote_fn, bad_special2, bad_specialn); qheader(quote_symbol) |= SYM_SPECIAL_FORM; progn_symbol = make_symbol("progn", restartp, progn_fn, bad_special2, bad_specialn); qheader(progn_symbol) |= SYM_SPECIAL_FORM; #ifdef COMMON declare_symbol = make_symbol("declare", restartp, declare_fn, bad_special2, bad_specialn); qheader(declare_symbol) |= SYM_SPECIAL_FORM; #endif cons_symbol = make_symbol("cons", restartp, too_few_2, Lcons, wrong_no_2); eval_symbol = make_symbol("eval", restartp, Leval, too_many_1, wrong_no_1); loadsource_symbol = make_symbol("load-source", restartp, Lload_source, too_many_1, wrong_no_1); /* * The main bunch of symbols can be handed using a table that * gives names and values. */ for (i=0; eval2_setup[i].name != NULL; i++) qheader(make_symbol(eval2_setup[i].name, restartp, eval2_setup[i].one, eval2_setup[i].two, eval2_setup[i].n)) |= SYM_SPECIAL_FORM; for (i=0; eval3_setup[i].name != NULL; i++) qheader(make_symbol(eval3_setup[i].name, restartp, eval3_setup[i].one, eval3_setup[i].two, eval3_setup[i].n)) |= SYM_SPECIAL_FORM; create_symbols(arith06_setup, restartp); create_symbols(arith08_setup, restartp); create_symbols(arith10_setup, restartp); create_symbols(arith12_setup, restartp); create_symbols(char_setup, restartp); create_symbols(eval1_setup, restartp); create_symbols(funcs1_setup, restartp); create_symbols(funcs2_setup, restartp); create_symbols(funcs3_setup, restartp); create_symbols(print_setup, restartp); create_symbols(read_setup, restartp); create_symbols(restart_setup, restartp); /* create_symbols(mpi_setup, restartp); */ /* * Although almost everything is mappeed into upper case in a Common Lisp * world I will preserve the case of symbols defined un u01 to u12. */ create_symbols(u01_setup, restartp | 2); create_symbols(u02_setup, restartp | 2); create_symbols(u03_setup, restartp | 2); create_symbols(u04_setup, restartp | 2); create_symbols(u05_setup, restartp | 2); create_symbols(u06_setup, restartp | 2); create_symbols(u07_setup, restartp | 2); create_symbols(u08_setup, restartp | 2); create_symbols(u09_setup, restartp | 2); create_symbols(u10_setup, restartp | 2); create_symbols(u11_setup, restartp | 2); create_symbols(u12_setup, restartp | 2); #ifdef NAG create_symbols(asp_setup, restartp); create_symbols(nag_setup, restartp); create_symbols(socket_setup, restartp); create_symbols(xdr_setup, restartp); create_symbols(grep_setup, restartp); create_symbols(axfns_setup, restartp); create_symbols(gr_setup, restartp); #endif #ifdef MEMORY_TRACE memory_comment(13); /* tail end of setup */ #endif #ifdef COMMON CP = saved_package; #endif } static int MS_CDECL alpha0(const void *a, const void *b) { return strcmp(*(const char **)a, *(const char **)b); } static int MS_CDECL alpha1(const void *a, const void *b) { return strcmp(1+*(const char **)a, 1+*(const char **)b); } static void set_up_variables(CSLbool restartp) { Lisp_Object nil = C_nil; int i; #ifdef COMMON Lisp_Object saved_package = CP; CP = find_package("LISP", 4); #endif qvalue(macroexpand_hook) = make_symbol("funcall", restartp, Lfuncall1, Lfuncall2, Lfuncalln); input_libraries = make_undefined_symbol("input-libraries"); qheader(input_libraries) |= SYM_SPECIAL_FORM; qvalue(input_libraries) = nil; for (i=number_of_fasl_paths-1; i>=0; i--) qvalue(input_libraries) = cons(SPID_LIBRARY + (((int32)i)<<20), qvalue(input_libraries)); output_library = make_undefined_symbol("output-library"); qheader(output_library) |= SYM_SPECIAL_FORM; qvalue(output_library) = output_directory < 0 ? nil : SPID_LIBRARY + (((int32)output_directory)<<20); /* * The Lisp variable lispsystem* gets set here. (in COMMON mode it is * the variable *features*) * Its value is a list. * csl says I am a CSL Lisp * (executable . "string") name of current executable (if available) * pipes do I support open-pipe? * (version . "string") eg "2.11" * (name . "string") eg "MSDOS/386" * (opsys . id) unix/msdos/riscos/win32/finder/riscos/... * id unix/msdos etc again... * win32s qualifier when (opsys . win32) is set * win95 ditto * help help mechanism provided within Lisp * (native . number) native code tag * (c-code . number) u01.c through u12.c define n functions * * In COMMON mode the tags on the *features* list are generally in the * keyword package. Otherwise they are just regular symbols. This makes it * slightly hard to use code that tests this list in a generic environment! */ { #ifdef COMMON Lisp_Object n = features_symbol; Lisp_Object w; char opsys[32]; char *p1 = opsys, *p2 = OPSYS; while ((*p1++ = toupper(*p2++)) != 0); *p1 = 0; w = cons(make_keyword(opsys), nil); #else Lisp_Object n = make_undefined_symbol("lispsystem*"); Lisp_Object w = cons(make_keyword(OPSYS), nil), w1; qheader(n) |= SYM_SPECIAL_VAR; #endif defined_symbols = 0; count_symbols(u01_setup); count_symbols(u02_setup); count_symbols(u03_setup); count_symbols(u04_setup); count_symbols(u05_setup); count_symbols(u06_setup); count_symbols(u07_setup); count_symbols(u08_setup); count_symbols(u09_setup); count_symbols(u10_setup); count_symbols(u11_setup); count_symbols(u12_setup); #ifdef COMMON /* * A gratuitous misery here is the need to make COMMON words * upper case. */ w = acons(make_keyword("OPSYS"), make_undefined_symbol(OPSYS), w); w = acons(make_keyword("NATIVE"), fixnum_of_int(native_code_tag), w); w = acons(make_keyword("C-CODE"), fixnum_of_int(defined_symbols), w); #ifdef WINDOWS_NT if (win32s==1) w = cons(make_keyword("WIN32S"), w); else if (win32s==2) w = cons(make_keyword("WIN95"), w); #endif #ifdef PIPES #ifdef PIPES_SOMETIMES if (pipes_today) #endif w = cons(make_keyword("PIPES"), w); #endif #ifdef HELP_SYSTEM w = cons(make_keyword("HELP"), w); #endif w = cons(make_keyword("RECORD_GET"), w); if (program_name[0] != 0) w = acons(make_keyword("EXECUTABLE"), make_string(program_name), w); w = acons(make_keyword("NAME"), make_string(IMPNAME), w); w = acons(make_keyword("VERSION"), make_string(VERSION), w); w = cons(make_keyword("CCL"), w); w = cons(make_keyword("COMMON-LISP"), w); #else /* !COMMON */ w = acons(make_keyword("opsys"), make_undefined_symbol(OPSYS), w); w = acons(make_keyword("native"), fixnum_of_int(native_code_tag), w); w = acons(make_keyword("c-code"), fixnum_of_int(defined_symbols), w); #ifdef WINDOWS_NT if (win32s==1) w = cons(make_keyword("win32s"), w); else if (win32s==2) w = cons(make_keyword("win95"), w); #endif #ifdef PIPES #ifdef PIPES_SOMETIMES if (pipes_today) #endif w = cons(make_keyword("pipes"), w); #endif #ifdef HELP_SYSTEM w = cons(make_keyword("help"), w); #endif #ifdef RECORD_GET w = cons(make_keyword("record_get"), w); #endif if (program_name[0] != 0) w = acons(make_keyword("executable"), make_string(program_name), w); w = acons(make_keyword("name"), make_string(IMPNAME), w); w = acons(make_keyword("version"), make_string(VERSION), w); w = cons(make_keyword("csl"), w); /* * Ha Ha a trick here - if a symbol ADDSQ is defined I view this image * as being one for REDUCE and push that information onto lispsystem*, * and I also reset the "about box" information (if using cwin). */ w1 = make_undefined_symbol("addsq"); if (qfn1(w1) != undefined1) { w = cons(make_keyword("reduce"), w); /* * I then inspect VERSION!* to try to see whether I have 3.6 or 3.7 */ w1 = qvalue(make_undefined_symbol("version*")); if (is_vector(w1) && type_of_header(vechdr(w1)) == TYPE_STRING) { #ifdef CWIN int n = length_of_header(vechdr(w1))-4; sprintf(about_box_title, "About %.*s", (n > 31-strlen("About ") ? 31-strlen("About ") : n), &celt(w1, 0)); sprintf(about_box_description, "%.*s", (n > 31 ? 31 : n), &celt(w1, 0)); /* * 3.6 did not have copyright1!* etc info, so take it specially here. */ if (memcmp(&celt(w1, 0), "REDUCE 3.6", 10) == 0) { strcpy(about_box_rights_1, "Copyright RAND 1995"); strcpy(about_box_rights_2, "Copyright Codemist 1996"); } else { w1 = qvalue(make_undefined_symbol("copyright1*")); if (is_vector(w1) && type_of_header(vechdr(w1)) == TYPE_STRING) { n = length_of_header(vechdr(w1))-4; sprintf(about_box_rights_1, "%.*s", n > 31 ? 31 : n, &celt(w1, 0)); } else strcpy(about_box_rights_1, "Copyright A C Hearn/RAND"); w1 = qvalue(make_undefined_symbol("copyright2*")); if (is_vector(w1) && type_of_header(vechdr(w1)) == TYPE_STRING) { n = length_of_header(vechdr(w1))-4; sprintf(about_box_rights_2, "%.*s", n > 31 ? 31 : n, &celt(w1, 0)); } else strcpy(about_box_rights_2, "Copyright Codemist Ltd"); } #endif } else { #ifdef CWIN strcpy(about_box_title, "About REDUCE"); strcpy(about_box_description, "REDUCE"); strcpy(about_box_rights_1, "Copyright A C Hearn/RAND"); strcpy(about_box_rights_2, "Copyright Codemist Ltd"); #endif } } #endif qheader(n) |= SYM_SPECIAL_VAR; qvalue(n) = w; } #ifdef COMMON /* * Floating point characteristics are taken from <float.h> where it is * supposed that the C compiler involved has got the values correct. * I do this every time the system is loaded rather than just when an * image is cold-created. This is because an image file may have been created * on a system differing from the one on which it is used. Mayve in fact * IEEE arithmetic is ALMOST universal and I am being too cautious here? */ { Lisp_Object w; make_constant("short-float-epsilon", make_sfloat(16.0*FLT_EPSILON)); make_constant("single-float-epsilon", make_boxfloat(FLT_EPSILON, TYPE_SINGLE_FLOAT)); make_constant("double-float-epsilon", make_boxfloat(DBL_EPSILON, TYPE_DOUBLE_FLOAT)); /* For now "long" = "double" */ make_constant("long-float-epsilon", make_boxfloat(DBL_EPSILON, TYPE_LONG_FLOAT)); /* * I assume that I have a radix 2 representation, and float-negative-epsilon * is just half float-epsilon. Correct me if I am wrong... */ make_constant("short-float-negative-epsilon", make_sfloat(16.0*FLT_EPSILON/2.0)); make_constant("single-float-negative-epsilon", make_boxfloat(FLT_EPSILON/2.0, TYPE_SINGLE_FLOAT)); make_constant("double-float-negative-epsilon", make_boxfloat(DBL_EPSILON/2.0, TYPE_DOUBLE_FLOAT)); /* For now "long" = "double" */ make_constant("long-float-negative-epsilon", make_boxfloat(DBL_EPSILON/2.0, TYPE_LONG_FLOAT)); /* * I hope that the C header file gets extremal values correct. Note that * because make_sfloat() truncates (rather than rounding) it should give * correct values for most-positive-short-float etc */ make_constant("most-positive-short-float", make_sfloat(FLT_MAX)); make_constant("most-positive-single-float", make_boxfloat(FLT_MAX, TYPE_SINGLE_FLOAT)); make_constant("most-positive-double-float", make_boxfloat(DBL_MAX, TYPE_DOUBLE_FLOAT)); make_constant("most-positive-long-float", make_boxfloat(DBL_MAX, TYPE_LONG_FLOAT)); /* * Here I assume that the floating point representation is sign-and-magnitude * and hence symmetric about zero. */ make_constant("most-negative-short-float", make_sfloat(-FLT_MAX)); make_constant("most-negative-single-float", make_boxfloat(-FLT_MAX, TYPE_SINGLE_FLOAT)); make_constant("most-negative-double-float", make_boxfloat(-DBL_MAX, TYPE_DOUBLE_FLOAT)); make_constant("most-negative-long-float", make_boxfloat(-DBL_MAX, TYPE_LONG_FLOAT)); /* * The "least-xxx" set of values did not consider the case of denormalised * numbers too carefully in ClTl-1, so in ClTl-2 there are elaborations. I * believe that a proper C header file <float.h> will make the macros that * I use here refer to NORMALISED values, so the numeric results I use * here will not be quite proper (ie there are smaller floats that are * un-normalised). But I will ignore that worry just for now. */ make_constant("least-positive-short-float", make_sfloat(FLT_MIN)); make_constant("least-positive-single-float", make_boxfloat(FLT_MIN, TYPE_SINGLE_FLOAT)); make_constant("least-positive-double-float", make_boxfloat(DBL_MIN, TYPE_DOUBLE_FLOAT)); make_constant("least-positive-long-float", make_boxfloat(DBL_MIN, TYPE_LONG_FLOAT)); make_constant("least-negative-short-float", make_sfloat(-FLT_MIN)); make_constant("least-negative-single-float", make_boxfloat(-FLT_MIN, TYPE_SINGLE_FLOAT)); make_constant("least-negative-double-float", make_boxfloat(-DBL_MIN, TYPE_DOUBLE_FLOAT)); make_constant("least-negative-long-float", make_boxfloat(-DBL_MIN, TYPE_LONG_FLOAT)); /* * The bunch here are intended to be NORMALISED numbers, while the unqualified * ones above may not be. */ make_constant("least-positive-normalized-short-float", make_sfloat(FLT_MIN)); make_constant("least-positive-normalized-single-float", make_boxfloat(FLT_MIN, TYPE_SINGLE_FLOAT)); make_constant("least-positive-normalized-double-float", make_boxfloat(DBL_MIN, TYPE_DOUBLE_FLOAT)); make_constant("least-positive-normalized-long-float", make_boxfloat(DBL_MIN, TYPE_LONG_FLOAT)); make_constant("least-negative-normalized-short-float", make_sfloat(-FLT_MIN)); make_constant("least-negative-normalized-single-float", make_boxfloat(-FLT_MIN, TYPE_SINGLE_FLOAT)); make_constant("least-negative-normalized-double-float", make_boxfloat(-DBL_MIN, TYPE_DOUBLE_FLOAT)); make_constant("least-negative-normalized-long-float", make_boxfloat(-DBL_MIN, TYPE_LONG_FLOAT)); #ifdef UNIX_TIMES /* /* * ACN believes that the following is misguided, since the time-reading * function (defined in fns1.c) that CCL provides always returns its answer * in milliseconds. This the 1000 below is NOT as arbitrary as all that, it * represents the unit that CCL (across all platforms) returns time * measurements in. The UNIX_TIMES macro is set on Unix systems to * influence whether the times() function or clock() is used to read * time, where in the former case Unix makes it possible to separate * user and system time. */ /* UNIX_TIMES is set in machine.h and will usually be HZ. */ make_constant("internal-time-units-per-second", fixnum_of_int(UNIX_TIMES)); #else make_constant("internal-time-units-per-second", fixnum_of_int(1000)); /* Arbitrary figure */ #endif } #endif #ifdef MEMORY_TRACE memory_comment(3); /* creating symbols */ #endif charvec = getvector_init(257<<2, nil); faslvec = nil; faslgensyms = nil; qheader(terminal_io = make_undefined_symbol("*terminal-io*")) |= SYM_SPECIAL_VAR; qheader(standard_input = make_undefined_symbol("*standard-input*")) |= SYM_SPECIAL_VAR; qheader(standard_output = make_undefined_symbol("*standard-output*")) |= SYM_SPECIAL_VAR; qheader(error_output = make_undefined_symbol("*error-output*")) |= SYM_SPECIAL_VAR; qheader(trace_output = make_undefined_symbol("*trace-output*")) |= SYM_SPECIAL_VAR; qheader(debug_io = make_undefined_symbol("*debug-io*")) |= SYM_SPECIAL_VAR; qheader(query_io = make_undefined_symbol("*query-io*")) |= SYM_SPECIAL_VAR; stream_type(lisp_work_stream) = make_undefined_symbol("work-stream"); { Lisp_Object f = lisp_terminal_io; stream_type(f) = make_undefined_symbol("terminal-stream"); set_stream_read_fn(f, char_from_terminal); set_stream_read_other(f, read_action_terminal); set_stream_write_fn(f, char_to_terminal); set_stream_write_other(f, write_action_terminal); qvalue(terminal_io) = f; f = lisp_standard_input; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON /* * If I do not have COMMON defined I will take a slight short cut here and * make reading from *standard-input* read directly from the terminal. For * full Common Lisp compatibility I think *standard-input* is required to * be a synonym stream that will dynamically look at the value of the variable * *terminal-io* every time it does anything. Ugh, since people who assign to * or re-bind *terminal-io* seem to me to be asking for terrible trouble! */ set_stream_read_fn(f, char_from_synonym); #else set_stream_read_fn(f, char_from_terminal); #endif set_stream_read_other(f, read_action_synonym); stream_read_data(f) = terminal_io; qvalue(standard_input) = f; f = lisp_standard_output; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON set_stream_write_fn(f, char_to_synonym); #else set_stream_write_fn(f, char_to_terminal); #endif set_stream_write_other(f, write_action_synonym); stream_write_data(f) = terminal_io; qvalue(standard_output) = f; f = lisp_error_output; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON set_stream_write_fn(f, char_to_synonym); #else set_stream_write_fn(f, char_to_terminal); #endif set_stream_write_other(f, write_action_synonym); stream_write_data(f) = terminal_io; qvalue(error_output) = f; f = lisp_trace_output; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON set_stream_write_fn(f, char_to_synonym); #else set_stream_write_fn(f, char_to_terminal); #endif set_stream_write_other(f, write_action_synonym); stream_write_data(f) = terminal_io; qvalue(trace_output) = f; f = lisp_debug_io; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON set_stream_read_fn(f, char_from_synonym); #else set_stream_read_fn(f, char_from_terminal); #endif set_stream_read_other(f, read_action_synonym); stream_read_data(f) = terminal_io; #ifdef COMMON set_stream_write_fn(f, char_to_synonym); #else set_stream_write_fn(f, char_to_terminal); #endif set_stream_write_other(f, write_action_synonym); stream_write_data(f) = terminal_io; qvalue(debug_io) = f; f = lisp_query_io; stream_type(f) = make_undefined_symbol("synonym-stream"); #ifdef COMMON set_stream_read_fn(f, char_from_synonym); #else set_stream_read_fn(f, char_from_terminal); #endif set_stream_read_other(f, read_action_synonym); stream_read_data(f) = terminal_io; #ifdef COMMON set_stream_write_fn(f, char_to_synonym); #else set_stream_write_fn(f, char_to_terminal); #endif set_stream_write_other(f, write_action_synonym); stream_write_data(f) = terminal_io; qvalue(query_io) = f; } /* * I can not handle boffo overflow very well here, but I do really hope that * symbols spelt out on the command line will always be fairly short. */ for (i=0; i<number_of_symbols_to_define; i++) { CSLbool undef = undefine_this_one[i]; char *s = symbols_to_define[i]; if (undef) { Lisp_Object n = make_undefined_symbol(s); qvalue(n) = unset_var; } else { char buffer[256]; char *p = buffer; int c; Lisp_Object n, v; while ((c = *s++) != 0 && c != '=') *p++ = c; *p = 0; n = make_undefined_symbol(buffer); push(n); if (c == 0) v = lisp_true; else { /* * I have been having a big difficulty here, caused by the inconsistent and * awkward behaviours of various shells and "make" utilities. In a tidy * and simple world I might like a command-line option -Dxx=yyy to allow * arbitrary text for yyy terminating it at the next whitespace. Then yyy * could be processed by the Lisp reader so that numbers, symbols, strings * etc could be specified. However I find that things I often want to * use involve characters such as "\" and ":" (as components of file-names * on some machines), and sometimes "make" treats these as terminators, or * wants to do something magic with "\". If I put things within quote marks * then sometimes the quotes get passed through to Lisp and sometimes not. * This is all a BIG misery in a multi-platform situation! As a fresh * attempt to inject sanity I will always convert yyy to a Lisp string. If * it is specified with leading and trailing '"' marks I will strip them. Thus * both -Dxxx=yyy and -Dxxx="yyy" will leave the variable xxx set to the * string "yyy". Then as a Lisp user I can parse the string if I need to * interpret it as something else. */ #ifndef PASS_PREDEFINES_THROUGH_READER if (*s == '"') /* Convert "yyy" to just yyy */ { p = ++s; while (*p != 0) p++; if (*--p == '"') *p = 0; } #endif v = make_string(s); #ifdef PASS_PREDEFINES_THROUGH_READER v = Lexplodec(nil, v); v = Lcompress(nil, v); /* * The above will first make the value in -Dname=value into a string, * then explode it into a list, and compress back - the effect is as if the * original value had been passed through the regular Lisp READ function, * so symbols, numbers and even s-expressions can be parsed. If the * parsing fails I (silently) treat the value as just NIL. */ #endif nil = C_nil; if (exception_pending()) v = flip_exception(); } pop(n); qheader(n) |= SYM_SPECIAL_VAR; qvalue(n) = v; } } #ifndef COMMON #ifdef CWIN /* * Now if I have the CWIN windowed system (I might want this info elsewhere * too if another windowed implementation of CSL can use it) I look in the * Lisp variables * loadable-packages!* * switches!* * (both expected to be lists of symbols) and copy info into a couple of * C vectors, whence it can go to the window manager and be used to create * suitable menus. */ { Lisp_Object w1 = qvalue(make_undefined_symbol("loadable-packages*")); Lisp_Object w2; int n; char *v; n = 0; for (w2=w1; consp(w2); w2=qcdr(w2)) n++; /* How many? */ loadable_packages = (char **)malloc((n+1)*sizeof(char *)); if (loadable_packages != NULL) { n = 0; for (w2=w1; consp(w2); w2=qcdr(w2)) { Lisp_Object w3 = qcar(w2); int n1; if (is_symbol(w3)) w3 = qpname(w3); if (!is_vector(w3) || type_of_header(vechdr(w3)) != TYPE_STRING) break; n1 = length_of_header(vechdr(w3))-4; v = (char *)malloc(n1+1); if (v == NULL) break; memcpy(v, &celt(w3, 0), n1); v[n1] = 0; loadable_packages[n++] = v; } qsort(loadable_packages, n, sizeof(char *), alpha0); loadable_packages[n] = NULL; } w1 = qvalue(make_undefined_symbol("switches*")); n = 0; for (w2=w1; consp(w2); w2=qcdr(w2)) n++; /* How many? */ switches = (char **)malloc((n+1)*sizeof(char *)); if (switches != NULL) { n = 0; for (w2=w1; consp(w2); w2=qcdr(w2)) { Lisp_Object w3 = qcar(w2), w4; char sname[64]; int n1; if (is_symbol(w3)) w3 = qpname(w3); if (!is_vector(w3) || type_of_header(vechdr(w3)) != TYPE_STRING) break; n1 = length_of_header(vechdr(w3))-4; if (n1 > 60) break; sprintf(sname, "*%.*s", n1, &celt(w3, 0)); w4 = make_undefined_symbol(sname); v = (char *)malloc(n1+2); if (v == NULL) break; /* * The first character records the current state of the switch. */ if (qvalue(w4) == nil) v[0] = 'n'; else v[0] = 'y'; memcpy(v+1, &celt(w3, 0), n1); v[n1+1] = 0; switches[n++] = v; } qsort(switches, n, sizeof(char *), alpha1); switches[n] = NULL; } } #endif #endif #ifdef COMMON CP = saved_package; #endif } unsigned char registration_data[REGISTRATION_SIZE]; CSLbool MD5_busy; unsigned char unpredictable[256]; static int n_unpredictable = 0; static CSLbool unpredictable_pending = 0; void inject_randomness(int n) { unpredictable[n_unpredictable++] ^= (n % 255); if (n_unpredictable >= 256) { n_unpredictable = 0; unpredictable_pending = YES; } if (unpredictable_pending & !MD5_busy) { MD5_Init(); MD5_Update(unpredictable, sizeof(unpredictable)); MD5_Final(unpredictable); unpredictable_pending = NO; } } /* * For some of what follows I think I need to show that I have considered * the issue of export regulations. * * What I have here is MD5 (and when and if I feel keen SHA-1). I observe * that MD5, SHA-1 and DSA are made available as part of Sun's Java * Development Kit in the version that can be downloade freely from their * servers. They have a separate Java Cryptography Extension within which * they keep things that are subject to USA export regulations. I take this * as encouragement to believe that these three algorithms are not subject * to USA export limits. I believe such limits to be supersets (ie more * restrictive) than ones that apply in the UK and so feel happy about * including the implementations that I do here. Specifically, although I * have extracts from the SSL code which as a whole might give trouble if * importen to the USA and the re-exported I only have the message digest * bits that should not be so encumbered. I am aware that MD5 is now * considered weakish with SHA-1 the improved replacement, but will take the * view that I was not aiming for real security on anything anyway! */ /* * MD5 message digest code, adapted from Eric Young's version, * for which the copyright and disclaimer notices follow. Observe that * this code can be adapted and re-used subject to these terms being * retained. */ /* crypto/md/md5.c and support files */ /* Copyright (C) 1995-1997 Eric Young (eay@mincom.oz.au) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@mincom.oz.au). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@mincom.oz.au). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@mincom.oz.au)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@mincom.oz.au)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* * End of Eric Young's copyright and disclaimer notice. * * The changes made by A C Norman remove some optimisation to leave shorter * code (I will not be using this in speed-critical applications) and * adjusting the style and layout to agree with other Codemist utilities. */ #define MD5_CBLOCK 64 #define MD5_LBLOCK 16 static unsigned32 MD5_A, MD5_B, MD5_C, MD5_D; static unsigned32 MD5_Nl; static int MD5_num; static unsigned32 MD5_data[MD5_CBLOCK]; #define F(x,y,z) ((((y) ^ (z)) & (x)) ^ (z)) #define G(x,y,z) ((((x) ^ (y)) & (z)) ^ (y)) #define H(x,y,z) ((x) ^ (y) ^ (z)) #define I(x,y,z) (((x) | (~(z))) ^ (y)) #define ROTATE(a,n) (((a)<<(n))|((a)>>(32-(n)))) #define R0(a,b,c,d,k,s,t) { \ a+=((k)+(t)+F((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; } #define R1(a,b,c,d,k,s,t) { \ a+=((k)+(t)+G((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; } #define R2(a,b,c,d,k,s,t) { \ a+=((k)+(t)+H((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; } #define R3(a,b,c,d,k,s,t) { \ a+=((k)+(t)+I((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; } /* * Implemented from RFC1321 The MD5 Message-Digest Algorithm */ void MD5_Init() { MD5_busy = YES; MD5_A = 0x67452301; MD5_B = 0xefcdab89; MD5_C = 0x98badcfe; MD5_D = 0x10325476; MD5_Nl = 0; MD5_num = 0; } static unsigned char byte_order_test[4] = {1, 0, 0, 0}; static void md5_block() { unsigned32 A=MD5_A, B=MD5_B, C=MD5_C, D=MD5_D; int i; /* * Here I re-write the buffer so that it now behaves as if it is * an array of 32-bit words in native computer representation. On * many machines the code here will have no effect at all apart from * consuming a little time. I do a little test first to see if * it is really needed. */ unsigned32 *p = MD5_data; unsigned char *q = (unsigned char *)p; if (((unsigned32 *)byte_order_test)[0] != 1) { for (i=0; i<MD5_LBLOCK; i++) { unsigned32 w = *q++; w |= *q++ << 8; w |= *q++ << 16; w |= *q++ << 24; *p++ = w; } } p = MD5_data; /* Round 0 */ R0(A,B,C,D,p[ 0], 7,0xd76aa478); R0(D,A,B,C,p[ 1],12,0xe8c7b756); R0(C,D,A,B,p[ 2],17,0x242070db); R0(B,C,D,A,p[ 3],22,0xc1bdceee); R0(A,B,C,D,p[ 4], 7,0xf57c0faf); R0(D,A,B,C,p[ 5],12,0x4787c62a); R0(C,D,A,B,p[ 6],17,0xa8304613); R0(B,C,D,A,p[ 7],22,0xfd469501); R0(A,B,C,D,p[ 8], 7,0x698098d8); R0(D,A,B,C,p[ 9],12,0x8b44f7af); R0(C,D,A,B,p[10],17,0xffff5bb1); R0(B,C,D,A,p[11],22,0x895cd7be); R0(A,B,C,D,p[12], 7,0x6b901122); R0(D,A,B,C,p[13],12,0xfd987193); R0(C,D,A,B,p[14],17,0xa679438e); R0(B,C,D,A,p[15],22,0x49b40821); /* Round 1 */ R1(A,B,C,D,p[ 1], 5,0xf61e2562); R1(D,A,B,C,p[ 6], 9,0xc040b340); R1(C,D,A,B,p[11],14,0x265e5a51); R1(B,C,D,A,p[ 0],20,0xe9b6c7aa); R1(A,B,C,D,p[ 5], 5,0xd62f105d); R1(D,A,B,C,p[10], 9,0x02441453); R1(C,D,A,B,p[15],14,0xd8a1e681); R1(B,C,D,A,p[ 4],20,0xe7d3fbc8); R1(A,B,C,D,p[ 9], 5,0x21e1cde6); R1(D,A,B,C,p[14], 9,0xc33707d6); R1(C,D,A,B,p[ 3],14,0xf4d50d87); R1(B,C,D,A,p[ 8],20,0x455a14ed); R1(A,B,C,D,p[13], 5,0xa9e3e905); R1(D,A,B,C,p[ 2], 9,0xfcefa3f8); R1(C,D,A,B,p[ 7],14,0x676f02d9); R1(B,C,D,A,p[12],20,0x8d2a4c8a); /* Round 2 */ R2(A,B,C,D,p[ 5], 4,0xfffa3942); R2(D,A,B,C,p[ 8],11,0x8771f681); R2(C,D,A,B,p[11],16,0x6d9d6122); R2(B,C,D,A,p[14],23,0xfde5380c); R2(A,B,C,D,p[ 1], 4,0xa4beea44); R2(D,A,B,C,p[ 4],11,0x4bdecfa9); R2(C,D,A,B,p[ 7],16,0xf6bb4b60); R2(B,C,D,A,p[10],23,0xbebfbc70); R2(A,B,C,D,p[13], 4,0x289b7ec6); R2(D,A,B,C,p[ 0],11,0xeaa127fa); R2(C,D,A,B,p[ 3],16,0xd4ef3085); R2(B,C,D,A,p[ 6],23,0x04881d05); R2(A,B,C,D,p[ 9], 4,0xd9d4d039); R2(D,A,B,C,p[12],11,0xe6db99e5); R2(C,D,A,B,p[15],16,0x1fa27cf8); R2(B,C,D,A,p[ 2],23,0xc4ac5665); /* Round 3 */ R3(A,B,C,D,p[ 0], 6,0xf4292244); R3(D,A,B,C,p[ 7],10,0x432aff97); R3(C,D,A,B,p[14],15,0xab9423a7); R3(B,C,D,A,p[ 5],21,0xfc93a039); R3(A,B,C,D,p[12], 6,0x655b59c3); R3(D,A,B,C,p[ 3],10,0x8f0ccc92); R3(C,D,A,B,p[10],15,0xffeff47d); R3(B,C,D,A,p[ 1],21,0x85845dd1); R3(A,B,C,D,p[ 8], 6,0x6fa87e4f); R3(D,A,B,C,p[15],10,0xfe2ce6e0); R3(C,D,A,B,p[ 6],15,0xa3014314); R3(B,C,D,A,p[13],21,0x4e0811a1); R3(A,B,C,D,p[ 4], 6,0xf7537e82); R3(D,A,B,C,p[11],10,0xbd3af235); R3(C,D,A,B,p[ 2],15,0x2ad7d2bb); R3(B,C,D,A,p[ 9],21,0xeb86d391); MD5_A += A; MD5_B += B; MD5_C += C; MD5_D += D; } void MD5_Update(unsigned char *data, int len) { unsigned char *p = (unsigned char *)MD5_data; /* * The full MD5 procedure allows for encoding strings of up to * around 2^64 bits. I will restrict myself to 2^32 so I can just ignore * the high word of the bit-count. */ MD5_Nl += len<<3; /* Counts in BITS not BYTES here */ while (len != 0) { p[MD5_num++] = *data++; len--; if (MD5_num == MD5_CBLOCK) { md5_block(); MD5_num = 0; } } } void MD5_Final(unsigned char *md) { unsigned32 l = MD5_Nl; unsigned char *p = (unsigned char *)MD5_data; p[MD5_num++] = 0x80; if (MD5_num >= MD5_CBLOCK-8) { while (MD5_num < MD5_CBLOCK) p[MD5_num++] = 0; md5_block(); MD5_num = 0; } while (MD5_num < MD5_CBLOCK-8) p[MD5_num++] = 0; p[MD5_num++] = l; p[MD5_num++] = l>>8; p[MD5_num++] = l>>16; p[MD5_num++] = l>>24; p[MD5_num++] = 0; p[MD5_num++] = 0; p[MD5_num++] = 0; p[MD5_num++] = 0; md5_block(); p = md; l = MD5_A; *p++ = l; *p++ = l>>8; *p++ = l>>16; *p++ = l>>24; l = MD5_B; *p++ = l; *p++ = l>>8; *p++ = l>>16; *p++ = l>>24; l = MD5_C; *p++ = l; *p++ = l>>8; *p++ = l>>16; *p++ = l>>24; l = MD5_D; *p++ = l; *p++ = l>>8; *p++ = l>>16; *p++ = l>>24; MD5_busy = NO; } unsigned char *MD5(unsigned char *d, int n, unsigned char *md) { if (n < 0) n = strlen((char *)d); MD5_Init(); MD5_Update(d, n); MD5_Final(md); return md; } #ifdef STAND_ALONE_TESTING_OF_MD5_CODE int main(int argc, char *argv[]) { int i; unsigned char mm[16]; MD5("", 0, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("a", 1, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("abc", 3, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("message digest", -1, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("abcdefghijklmnopqrstuvwxyz", -1, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", -1, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); MD5("12345678901234567890123456789012345678901234567890123456789012345678901234567890", -1, mm); for (i=0; i<16; i++) printf("%.2x", mm[i] & 0xff); printf("\n"); return 0; } #endif /* * This is the end of the Eric Young code - what follows is Codemist * original code again. * * * * The next bit is for an experiment in controlling access to image files * etc. It is solely intended for use in implementing this access control * and is not made available as something that a CSL/Reduce user can access * directly. It favours high speed above other things, and much of its * security in use will be based on nobody having a real incentive to * poke at it since CSL-based images will not be expected to be of * sufficient value to justify the effort. */ int crypt_active; unsigned char *crypt_buffer; int crypt_count; /* * The following code was generated by running the program "gencry.c", * within which you can find the comments that explain what is going on. The * macro TIME_TEST could be defined to make this file more of a self- * contained test of its performance, but to do that you probably need * to look at the raw output from gencry.c. * * word length = 32 * shift register length = 65 * tap at position 18 * shuffle-buffer size = 4096 */ #ifdef TIME_TEST #include <stdio.h> #include <time.h> #define N 10000000 /* parameters for time test */ #define NSTARTS 4000 #define NTINY 50000000 #define KEY "Arthurs's sample key" typedef unsigned int unsigned32; #endif /* TIME_TEST */ static unsigned32 lf[65], mix[4096]; #define R(x) ((x) >> 20) #define S(x) ((x) >> 18) #define T(x) ((x) << 13) /* * static unsigned char byte_order_test[] = * {1, 0, 0, 0, 0, 0, 0, 0}; */ #define CRYPT_BLOCK_SIZE 128 void crypt_get_block(unsigned char block[CRYPT_BLOCK_SIZE]) { unsigned32 *b = (unsigned32 *)block; int n; lf[0] -= lf[18]; lf[1] ^= lf[19]; lf[2] -= lf[20]; lf[3] += lf[21]; lf[4] += lf[22]; lf[5] -= lf[23]; lf[6] ^= lf[24]; lf[7] -= lf[25]; lf[8] += lf[26]; lf[9] ^= lf[27]; lf[10] -= lf[28]; lf[11] -= lf[29]; lf[12] += lf[30]; lf[13] += lf[31]; lf[14] -= lf[32]; lf[15] ^= lf[33]; lf[16] -= lf[34]; lf[17] += lf[35]; lf[18] += lf[36]; lf[19] += lf[37]; lf[20] -= lf[38]; lf[21] -= lf[39]; lf[22] ^= lf[40]; lf[23] += lf[41]; lf[24] -= lf[42]; lf[25] -= lf[43]; lf[26] += lf[44]; lf[27] += lf[45]; lf[28] -= lf[46]; lf[29] ^= lf[47]; lf[30] -= lf[48]; lf[31] += lf[49]; lf[32] -= lf[50]; lf[33] ^= lf[51]; lf[34] -= lf[52]; lf[35] ^= lf[53]; lf[36] += lf[54]; lf[37] += lf[55]; lf[38] ^= lf[56]; lf[39] ^= lf[57]; lf[40] += lf[58]; lf[41] -= lf[59]; lf[42] ^= lf[60]; lf[43] += lf[61]; lf[44] += lf[62]; lf[45] ^= lf[63]; lf[46] ^= lf[64]; lf[47] -= lf[0]; lf[48] ^= lf[1]; lf[49] ^= lf[2]; lf[50] ^= lf[3]; lf[51] ^= lf[4]; lf[52] ^= lf[5]; lf[53] ^= lf[6]; lf[54] += lf[7]; lf[55] -= lf[8]; lf[56] -= lf[9]; lf[57] ^= lf[10]; lf[58] -= lf[11]; lf[59] -= lf[12]; lf[60] ^= lf[13]; lf[61] += lf[14]; lf[62] ^= lf[15]; lf[63] -= lf[16]; lf[64] -= lf[17]; n = R(lf[0]); b[0] = mix[n]; mix[n] = (lf[54] + S(lf[29])) ^ T(lf[5]); n = R(lf[1]); b[1] = mix[n]; mix[n] = ~(lf[39] + S(lf[47])) + T(lf[15]); n = R(lf[2]); b[2] = mix[n]; mix[n] = (lf[25] + S(lf[14])) + T(lf[38]); n = R(lf[4]); b[3] = mix[n]; mix[n] = ~(lf[48] - S(lf[40])) ^ T(lf[10]); n = R(lf[5]); b[4] = mix[n]; mix[n] = (lf[44] - S(lf[55])) - T(lf[49]); n = R(lf[6]); b[5] = mix[n]; mix[n] = ~(lf[9] ^ S(lf[37])) + T(lf[50]); n = R(lf[8]); b[6] = mix[n]; mix[n] = (lf[64] ^ S(lf[51])) + T(lf[8]); n = R(lf[9]); b[7] = mix[n]; mix[n] = ~(lf[11] - S(lf[35])) - T(lf[21]); n = R(lf[10]); b[8] = mix[n]; mix[n] = (lf[20] ^ S(lf[21])) ^ T(lf[3]); n = R(lf[12]); b[9] = mix[n]; mix[n] = ~(lf[6] ^ S(lf[31])) - T(lf[61]); n = R(lf[13]); b[10] = mix[n]; mix[n] = (lf[3] - S(lf[16])) ^ T(lf[16]); n = R(lf[14]); b[11] = mix[n]; mix[n] = ~(lf[17] - S(lf[53])) - T(lf[2]); n = R(lf[16]); b[12] = mix[n]; mix[n] = (lf[27] + S(lf[42])) - T(lf[33]); n = R(lf[17]); b[13] = mix[n]; mix[n] = ~(lf[28] + S(lf[63])) - T(lf[46]); n = R(lf[18]); b[14] = mix[n]; mix[n] = (lf[10] - S(lf[46])) + T(lf[35]); n = R(lf[20]); b[15] = mix[n]; mix[n] = ~(lf[53] - S(lf[10])) - T(lf[27]); n = R(lf[21]); b[16] = mix[n]; mix[n] = (lf[4] + S(lf[18])) - T(lf[7]); n = R(lf[22]); b[17] = mix[n]; mix[n] = ~(lf[43] + S(lf[64])) ^ T(lf[45]); n = R(lf[24]); b[18] = mix[n]; mix[n] = (lf[14] + S(lf[26])) + T(lf[44]); n = R(lf[25]); b[19] = mix[n]; mix[n] = ~(lf[23] ^ S(lf[38])) + T(lf[58]); n = R(lf[26]); b[20] = mix[n]; mix[n] = (lf[47] + S(lf[59])) ^ T(lf[47]); n = R(lf[28]); b[21] = mix[n]; mix[n] = ~(lf[63] - S(lf[36])) - T(lf[57]); n = R(lf[29]); b[22] = mix[n]; mix[n] = (lf[56] + S(lf[4])) + T(lf[19]); n = R(lf[30]); b[23] = mix[n]; mix[n] = ~(lf[42] - S(lf[52])) - T(lf[56]); n = R(lf[32]); b[24] = mix[n]; mix[n] = (lf[37] + S(lf[3])) - T(lf[63]); n = R(lf[33]); b[25] = mix[n]; mix[n] = ~(lf[32] + S(lf[1])) - T(lf[12]); n = R(lf[34]); b[26] = mix[n]; mix[n] = (lf[62] - S(lf[39])) - T(lf[31]); n = R(lf[36]); b[27] = mix[n]; mix[n] = ~(lf[2] ^ S(lf[44])) ^ T(lf[18]); n = R(lf[37]); b[28] = mix[n]; mix[n] = (lf[24] ^ S(lf[50])) ^ T(lf[55]); n = R(lf[38]); b[29] = mix[n]; mix[n] = ~(lf[22] + S(lf[27])) - T(lf[32]); n = R(lf[40]); b[30] = mix[n]; mix[n] = (lf[51] + S(lf[33])) + T(lf[0]); n = R(lf[41]); b[31] = mix[n]; mix[n] = ~(lf[52] ^ S(lf[19])) - T(lf[26]); n = R(lf[42]); mix[n] = (lf[5] ^ S(lf[41])) + T(lf[28]); n = R(lf[44]); mix[n] = ~(lf[30] ^ S(lf[15])) - T(lf[30]); n = R(lf[45]); mix[n] = (lf[45] + S(lf[24])) ^ T(lf[51]); n = R(lf[46]); mix[n] = ~(lf[13] + S(lf[49])) - T(lf[11]); n = R(lf[48]); mix[n] = (lf[16] + S(lf[11])) - T(lf[39]); n = R(lf[49]); mix[n] = ~(lf[57] - S(lf[43])) - T(lf[60]); n = R(lf[50]); mix[n] = (lf[49] + S(lf[48])) ^ T(lf[25]); n = R(lf[52]); mix[n] = ~(lf[34] - S(lf[22])) ^ T(lf[23]); n = R(lf[53]); mix[n] = (lf[18] + S(lf[6])) + T(lf[1]); n = R(lf[54]); mix[n] = ~(lf[29] + S(lf[61])) - T(lf[64]); n = R(lf[56]); mix[n] = (lf[59] ^ S(lf[45])) - T(lf[41]); n = R(lf[57]); mix[n] = ~(lf[36] - S(lf[32])) + T(lf[37]); n = R(lf[58]); mix[n] = (lf[40] + S(lf[60])) + T(lf[14]); n = R(lf[60]); mix[n] = ~(lf[1] + S(lf[56])) ^ T(lf[36]); n = R(lf[61]); mix[n] = (lf[8] ^ S(lf[5])) ^ T(lf[17]); n = R(lf[62]); mix[n] = ~(lf[31] ^ S(lf[17])) ^ T(lf[52]); /* The test this way around favours Intel etc byte order */ if (((unsigned int *)byte_order_test)[0] != 1) { int i; for (i=0; i<32; i++) { unsigned32 w = b[i]; unsigned32 b0, b1, b2, b3; b0 = (w >> 24) & 0xffU; b1 = (w >> 8) & 0xff00U; b2 = (w << 8) & 0xff0000U; b3 = (w << 24) & 0xff000000U; b[i] = b0 | b1 | b2 | b3; } } return; } void crypt_init(char *key) { char *pk = key; unsigned char junk[CRYPT_BLOCK_SIZE]; int i, j; unsigned32 w = 0; for (i=0; i<260; i++) { int k = *pk++; if (k == 0) pk = key; /* Cycle key (inc. terminating 0) */ w = (w << 8) | (k & 0xff); if ((i % 4) == 3) lf[i/4] = w; } for (i=0; i<4096; i++) mix[i] = 0; for (i=0; i<8; i++) { for (j=0; j<65; j++) lf[j] = (lf[j] << 10) | (lf[j] >> 22); lf[0] |= 1; for (j=0; j<64; j++) crypt_get_block(junk); } for (i=0; i<4096;) { int j; crypt_get_block(junk); for (j=0; j<32; j++) { unsigned32 r = junk[4*j]; r = (r << 8) | junk[4*j+1]; r = (r << 8) | junk[4*j+2]; r = (r << 8) | junk[4*j+3]; if (r == 0) continue; mix[i++] ^= junk[j]; if (i == 4096) break; } } for (i=0; i<192; i++) crypt_get_block(junk); return; } #ifdef TIME_TEST /* * The main program here does not do anything of real interest. It * runs both the key-setup and the main loop lots of times and reports * how long it all takes. * * Here is some sample output from a Pentium-II 400Mhz system * * [02faf080] 7.60 nanoseconds to do tiny loop * 1.25 milliseconds to startup * rate = 104.86 megabytes per second * 79 a7 e1 52 2e 84 09 ce d0 3d 45 b2 52 2d b6 c7 * 9b ee 57 25 68 58 b7 44 42 51 1c c7 de 69 0f 89 * 98 6c cd 45 e0 a1 d4 04 a3 be 3d 5f 93 64 c9 d9 * b9 47 28 59 d0 99 5a 35 56 fd 89 e6 48 4f a4 88 * 7e dd 31 76 2b 8e 96 fa d0 6f d7 30 9c 3c 01 97 * 8a 54 93 c0 02 1d 26 df 31 2b 7b 92 56 51 fa 47 * 92 13 39 47 45 d2 b5 33 2b f6 cc 62 ec 73 00 40 * 66 ab 37 f5 1d 21 3a a9 b8 da 35 ac 04 f1 3b 53 * */ int main(int argc, char *argv[]) { clock_t c0, c1; unsigned char r[CRYPT_BLOCK_SIZE]; int i, j = 0; double rate; c0 = clock(); for (i=0; i<(NTINY+1); i++) j ^= i; c1 = clock(); printf("[%.8x] %.2f nanoseconds to do tiny loop\n", j, 1.0e9*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)(NTINY+1))); c0 = clock(); for (i=0; i<NSTARTS; i++) crypt_init(KEY); c1 = clock(); printf("%.2f milliseconds to startup\n", 1000.0*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)NSTARTS)); c0 = clock(); for (i=0; i<N; i++) crypt_get_block(r); c1 = clock(); rate = (double)N*(double)CRYPT_BLOCK_SIZE*(double)CLOCKS_PER_SEC/ ((double)(c1-c0)*1.0e6); printf("rate = %.2f megabytes per second\n", rate); for (i=0; i<128; i++) { printf("%.2x ", r[i]); if ((i % 16) == 15) printf("\n"); } return 0; } #endif /* TIME_TEST */ #undef R #undef S #undef T /* End of generated code... */ static void get_checksum(const setup_type *p) { while (p->name!=NULL) p++; if (p->one != NULL && p->two != NULL) { unsigned char *w = (unsigned char *)p->two; MD5_Update(w, strlen((char *)w)); } } void get_user_files_checksum(unsigned char *b) { MD5_Init(); get_checksum(u01_setup); get_checksum(u02_setup); get_checksum(u03_setup); get_checksum(u04_setup); get_checksum(u05_setup); get_checksum(u06_setup); get_checksum(u07_setup); get_checksum(u08_setup); get_checksum(u09_setup); get_checksum(u10_setup); get_checksum(u11_setup); get_checksum(u12_setup); MD5_Final(b); } char *crypt_keys[CRYPT_KEYS]; void setup(int restartp, double store_size) { int i; Lisp_Object nil; #ifdef TIME_TEST_CRYPTO /* *********** Now I will time my encryption stuff... ************* */ clock_t t0 = clock(), t1; #define TRIALS 2000 for (i=0; i<TRIALS; i++) crypt_init("Arthur\'s secret key"); t1 = clock(); term_printf("Time for crypt_init = %.2g milliseconds\n", 1.0e3*((double)(t1-t0))/(double)CLOCKS_PER_SEC/(double)TRIALS); #define TRIALS1 1000000 { unsigned char buffer[CRYPT_BLOCK]; t0 = clock(); for (i=0; i<TRIALS1; i++) crypt_get_block(buffer); t1 = clock(); } { double Mbytes = (double)TRIALS1*(double)CRYPT_BLOCK/1000000.0; double seconds = (double)(t1-t0)/(double)CLOCKS_PER_SEC; term_printf("Time to do 1 Mbyte = %.2g seconds\n", seconds/Mbytes); term_printf("Ie %.4g Mbytes per sec\n", Mbytes/seconds); } /* **************** end of temp gunk ***************** */ #endif crypt_active = -1; #ifdef DEBUG /* * Just a sanity check so that if I add entries in this table but to * not change the recorded size I will be warned. */ if ((entry_table_size+1)*sizeof(entry_point) != sizeof(entries_table)) { term_printf("entry_table_size badly set up in externs.h\n"); my_exit(EXIT_FAILURE); } if (sizeof(int32) != 4 || sizeof(unsigned32) != 4 || #ifdef SIXTY_FOUR_BIT sizeof(int64) != 8 || sizeof(unsigned64) != 8 || #endif #ifndef ILP64 sizeof(int16) != 2 || sizeof(unsigned16) != 2 || #endif sizeof(int8) != 1 || sizeof(unsigned8) != 1) { term_printf("Some datatype size is wrongly set up in tags.h\n"); my_exit(EXIT_FAILURE); } #endif if (restartp & 2) init_heap_segments(store_size); restartp &= 1; nil = C_nil; #ifdef TIDY_UP_MEMORY_AT_START /* * The following should not be needed, feature on big machines could be * expensive. The code is left in case it helps with repeatability in * the face of accesses to uninitialised locations (ie BUGS) */ for (i=0; i<pages_count; i++) memset(pages[i], 0, (size_t)CSL_PAGE_SIZE+8); memset(stacksegment, 0, (size_t)stack_segsize*CSL_PAGE_SIZE+8); memset(nilsegment, 0, (size_t)NIL_SEGMENT_SIZE); #endif stack = stackbase; exit_tag = exit_value = nil; exit_reason = UNWIND_NULL; if (restartp & 1) { char junkbuf[120]; char filename[LONGEST_LEGAL_FILENAME]; if (IopenRoot(filename, 0)) { term_printf("\n+++ Image file \"%s\" can not be read\n", filename); my_exit(EXIT_FAILURE); } /* * I read input via a buffer of size FREAD_BUFFER_SIZE, which I pre-fill * at this stage before I even try to read anything */ fread_ptr = (unsigned char *)stack; fread_count = Iread(fread_ptr, FREAD_BUFFER_SIZE); /* * I can adjust here (automatically) for whatever compression threshold * had been active when the image file was created. */ compression_worth_while = 128; crypt_active = -1; Cfread(junkbuf, 112); { int fg = junkbuf[111]; while (fg != 0) compression_worth_while <<= 1, fg--; fg = junkbuf[110]; while (fg != 0) crypt_active++, fg--; if (crypt_active >= 0 && crypt_active < CRYPT_KEYS && crypt_keys[crypt_active] != NULL) { crypt_init(crypt_keys[crypt_active]); if ((crypt_buffer = (unsigned char *)malloc(CRYPT_BLOCK)) == NULL) crypt_active = -1; /* And will then fail */ crypt_count = 0; } } if (init_flags & INIT_VERBOSE) { term_printf("Created: %.25s\n", &junkbuf[64]); /* Time dump was taken */ } { unsigned char chk[16]; get_user_files_checksum(chk); for (i=0; i<16; i++) { if (chk[i] != (junkbuf[90+i] & 0xff)) { term_printf( "\n+++ Image file belongs with a different version\n"); term_printf( " of the executable file (incompatible code\n"); term_printf( " has been optimised into C and incorporated)\n"); term_printf( " Unable to use this image file, so stopping\n"); my_exit(EXIT_FAILURE); } } } /* * To make things more responsive for the user I will display a * banner rather early (before reading the bulk of the image file). * The banner that I will display is one provided to be by PRESERVE. */ { Ihandle save; char b[64]; int i; Icontext(&save); #define BANNER_CODE (-1002) if (IopenRoot(filename, BANNER_CODE)) b[0] = 0; else { for (i=0; i<64; i++) b[i] = Igetc(); IcloseInput(NO); } Irestore_context(save); /* * A banner set via startup-banner takes precedence over one from preserve. */ if (b[0] != 0) { term_printf("%s\n", b); ensure_screen(); } else if (junkbuf[0] != 0) { term_printf("%s\n", junkbuf); ensure_screen(); } } #ifdef PREVIOUS_ATTEMPT_AT_AUTHENTICATION { char username[48]; unsigned char sig[16]; unsigned32 hash; int c1; unsigned char *s = ®istration_data[4]; MD5_Update(s, 48); MD5_Final(sig); if (memcmp(sig, &s[48], 16) != 0) { term_printf("************************************\n"); term_printf("* Registration data seems corrupt *\n"); term_printf("* Please check with your supplier. *\n"); term_printf("************************************\n"); /* * If I were really feeling confident - or possibly mean - I would * just exit from the system here declaring that my consistency check * had failed and that hence there was a presumption that somebody had * tried to patch or otherwise bodge my registration-name code. At least for * a few weeks I will not go that far, and I will expect that the annoying * message above will do quite enough. The real security that I can enforce * is pretty low anyway, and so overall I believe that the policy adopted * here is probably adequate. */ } else { hash = *s++; hash |= *s++<<8; hash |= *s++<<16; hash |= *s++<<24; for (c1=0;c1<44;c1++) { hash = 69069*hash + 314159; username[c1] = *s++ ^ (hash >> 16); } while (c1 > 0 && username[--c1] == ' ') username[c1] = 0; term_printf("Registered to: %s\n", username); } } #endif /* AUTHORIZATION */ /* * From here on if crypt_active is >= 0 I will be decoding an encrypted * image file. */ Cfread(junkbuf, 8); Cfread((char *)nil, sizeof(Lisp_Object)*last_nil_offset); copy_out_of_nilseg(YES); #ifndef COMMON qheader(nil) = TAG_ODDS+TYPE_SYMBOL+SYM_SPECIAL_VAR;/* BEFORE nil... */ #endif if ((byteflip & 0xffff0000U) == 0x56780000U) { flip_needed = NO; old_fp_rep = (int)(byteflip & FP_MASK); old_page_bits = (int)((byteflip >> 8) & 0x1f); } else if ((byteflip & 0x0000ffffU) == 0x00007856U) { flip_needed = YES; old_fp_rep = (int)(flip_bytes_fn(byteflip) & FP_MASK); old_page_bits = (int)((flip_bytes_fn(byteflip) >> 8) & 0x1f); } else { term_printf("\n+++ The checkpoint file is corrupt\n"); /* * Note: I use different numbers to check byte-ordering on segmented feature * non-segmented systems, since the heap image formats are not compatible. * A result will be that use of the wrong sort of image will lead to a * "checkpoint file corrupt" message rather than a more serious shambles. */ my_exit(EXIT_FAILURE); } if (old_page_bits == 0) old_page_bits = 16; /* Old default value */ /* * I could in fact recover in the case that old_page_bits < PAGE_BITS, since * I could just map the old small pages into the new big ones with a little * padding where needed. I will not do that JUST yet. In general it will * not be possible to load an image with large pages into a CSL that only * has small ones - eg there might be some vector that just would not fit * in the small page size. Even discounting that worry rearranging the * heap to allow for the discontinuities at the smaller page granularity would * be pretty painful. Again in the limit something very much akin to the * normal garbage collector could probably do it if it ever became really * necessary. */ if (old_page_bits != PAGE_BITS) { term_printf("\n+++ The checkpoint file was made on a machine\n"); term_printf("where CSL had been configured with a different page\n"); term_printf("size. It is not usable with this version.\n"); my_exit(EXIT_FAILURE); } /* The saved value of NIL is not needed in this case */ } else { for (i=first_nil_offset; i<last_nil_offset; i++) ((Lisp_Object *)nil)[i] = nil; copy_out_of_nilseg(NO); } stacklimit = &stack[stack_segsize*CSL_PAGE_SIZE/4-200]; /* allow some slop at end */ byteflip = 0x56780000 | ((int32)current_fp_rep & ~FP_WORD_ORDER) | (((int32)PAGE_BITS) << 8); native_pages_changed = 0; if (restartp) warm_setup(); else cold_setup(); if (init_flags & INIT_QUIET) Lverbos(nil, fixnum_of_int(1)); if (init_flags & INIT_VERBOSE) Lverbos(nil, fixnum_of_int(3)); #ifndef HOLD_BACK_MEMORY /* * Here I grab more memory (if I am allowed to) until the proportion of the * heap active at the end of garbage collection is less than 1/2. If the * attempt to grab more memory fails I clear the bit in init_flags that * allows me to try to expand, so I will not waste time again. If * HOLD_BACK_MEMORY was asserted (for machines where grabbing all seemingly * available memory may cause a crash) I do not try this operation. The * aim of keeping the heap less than half full is an heuristic and could be * adjusted on the basis of experience with this code. */ if (init_flags & INIT_EXPANDABLE) { int32 more = heap_pages_count + vheap_pages_count + bps_pages_count + native_pages_count; more = 3 *more - pages_count; while (more-- > 0) { void *page = (void *)my_malloc_1((size_t)(CSL_PAGE_SIZE + 8)); /* * CF the code in gc.c -- I can still use my_malloc_1 here, which makes this * code just a tiny bit safer. */ int32 pun = (int32)page; int32 pun1 = (int32)((char *)page + CSL_PAGE_SIZE + 8); if ((pun ^ pun1) < 0) page = NULL; #ifdef ADDRESS_SIGN_UNKNOWN if ((pun + address_sign) < 0) page = NULL; #else #ifdef ADDRESSES_HAVE_TOP_BIT_SET if (pun > 0) page = NULL; #else if (pun < 0) page = NULL; #endif #endif if (page == NULL) { init_flags &= ~INIT_EXPANDABLE; break; } else pages[pages_count++] = page; } } #endif { int32 w = 0; #ifndef NO_COPYING_GC /* * I will make the first garbage collection a copying one if the heap is * at most 25% full, or a sliding one if it is more full than that. */ w = heap_pages_count + vheap_pages_count + bps_pages_count + native_pages_count; gc_method = (pages_count > 3*w); #endif /* * The total store allocated is that used plus that free, including the * page set aside for the Lisp stack. */ if (init_flags & INIT_VERBOSE) term_printf("Memory allocation: %ld bytes\n", (long)CSL_PAGE_SIZE*(pages_count+w+1)); } #ifdef MEMORY_TRACE memory_comment(15); #endif return; } void copy_into_nilseg(int fg) { int i; Lisp_Object nil = C_nil; #ifdef NILSEG_EXTERNS if (fg) /* move non list bases too */ { ((unsigned32 *)nil)[12] = byteflip; ((Lisp_Object *)nil)[13] = codefringe; ((Lisp_Object volatile *)nil)[14] = codelimit; /* * The messing around here is to ensure that on 64-bit architectures * stacklimit is kept properly aligned. */ #ifdef COMMON *(Lisp_Object * volatile *)&((Lisp_Object *)nil)[16] = stacklimit; #else *(Lisp_Object * volatile *)&((Lisp_Object *)nil)[15] = stacklimit; #endif ((Lisp_Object *)nil)[18] = fringe; ((Lisp_Object volatile *)nil)[19] = heaplimit; ((Lisp_Object volatile *)nil)[20] = vheaplimit; ((Lisp_Object *)nil)[21] = vfringe; ((unsigned32 *)nil)[22] = miscflags; ((int32 *)nil)[24] = nwork; ((int32 *)nil)[25] = exit_reason; ((int32 *)nil)[26] = exit_count; ((unsigned32 *)nil)[27] = gensym_ser; ((unsigned32 *)nil)[28] = print_precision; ((int32 *)nil)[29] = current_modulus; ((int32 *)nil)[30] = fastget_size; ((int32 *)nil)[31] = package_bits; } /* * Entries 50 and 51 are used for chains of hash tables, and so get * very special individual treatment. */ ((Lisp_Object *)nil)[52] = current_package; ((Lisp_Object *)nil)[53] = B_reg; ((Lisp_Object *)nil)[54] = codevec; ((Lisp_Object *)nil)[55] = litvec; ((Lisp_Object *)nil)[56] = exit_tag; ((Lisp_Object *)nil)[57] = exit_value; ((Lisp_Object *)nil)[58] = catch_tags; ((Lisp_Object *)nil)[59] = lisp_package; ((Lisp_Object *)nil)[60] = boffo; ((Lisp_Object *)nil)[61] = charvec; ((Lisp_Object *)nil)[62] = sys_hash_table; ((Lisp_Object *)nil)[63] = help_index; ((Lisp_Object *)nil)[64] = gensym_base; ((Lisp_Object *)nil)[65] = err_table; ((Lisp_Object *)nil)[66] = supervisor; ((Lisp_Object *)nil)[67] = startfn; ((Lisp_Object *)nil)[68] = faslvec; ((Lisp_Object *)nil)[69] = tracedfn; ((Lisp_Object *)nil)[70] = prompt_thing; ((Lisp_Object *)nil)[71] = faslgensyms; ((Lisp_Object *)nil)[72] = cl_symbols; ((Lisp_Object *)nil)[73] = active_stream; ((Lisp_Object *)nil)[74] = current_module; ((Lisp_Object *)nil)[90] = append_symbol; ((Lisp_Object *)nil)[91] = applyhook; ((Lisp_Object *)nil)[92] = cfunarg; ((Lisp_Object *)nil)[93] = comma_at_symbol; ((Lisp_Object *)nil)[94] = comma_symbol; ((Lisp_Object *)nil)[95] = compiler_symbol; ((Lisp_Object *)nil)[96] = comp_symbol; ((Lisp_Object *)nil)[97] = cons_symbol; ((Lisp_Object *)nil)[98] = echo_symbol; ((Lisp_Object *)nil)[99] = emsg_star; ((Lisp_Object *)nil)[100] = evalhook; ((Lisp_Object *)nil)[101] = eval_symbol; ((Lisp_Object *)nil)[102] = expr_symbol; ((Lisp_Object *)nil)[103] = features_symbol; ((Lisp_Object *)nil)[104] = fexpr_symbol; ((Lisp_Object *)nil)[105] = funarg; ((Lisp_Object *)nil)[106] = function_symbol; ((Lisp_Object *)nil)[107] = lambda; ((Lisp_Object *)nil)[108] = lisp_true; ((Lisp_Object *)nil)[109] = lower_symbol; ((Lisp_Object *)nil)[110] = macroexpand_hook; ((Lisp_Object *)nil)[111] = macro_symbol; ((Lisp_Object *)nil)[112] = opt_key; ((Lisp_Object *)nil)[113] = prinl_symbol; ((Lisp_Object *)nil)[114] = progn_symbol; ((Lisp_Object *)nil)[115] = quote_symbol; ((Lisp_Object *)nil)[116] = raise_symbol; ((Lisp_Object *)nil)[117] = redef_msg; ((Lisp_Object *)nil)[118] = rest_key; ((Lisp_Object *)nil)[119] = savedef; ((Lisp_Object *)nil)[120] = string_char_sym; ((Lisp_Object *)nil)[121] = unset_var; ((Lisp_Object *)nil)[122] = work_symbol; ((Lisp_Object *)nil)[123] = lex_words; ((Lisp_Object *)nil)[124] = get_counts; ((Lisp_Object *)nil)[125] = fastget_names; ((Lisp_Object *)nil)[126] = input_libraries; ((Lisp_Object *)nil)[127] = output_library; ((Lisp_Object *)nil)[128] = current_file; ((Lisp_Object *)nil)[129] = break_function; ((Lisp_Object *)nil)[130] = lisp_work_stream; ((Lisp_Object *)nil)[131] = lisp_standard_output; ((Lisp_Object *)nil)[132] = lisp_standard_input; ((Lisp_Object *)nil)[133] = lisp_debug_io; ((Lisp_Object *)nil)[134] = lisp_error_output; ((Lisp_Object *)nil)[135] = lisp_query_io; ((Lisp_Object *)nil)[136] = lisp_terminal_io; ((Lisp_Object *)nil)[137] = lisp_trace_output; ((Lisp_Object *)nil)[138] = standard_output; ((Lisp_Object *)nil)[139] = standard_input; ((Lisp_Object *)nil)[140] = debug_io; ((Lisp_Object *)nil)[141] = error_output; ((Lisp_Object *)nil)[142] = query_io; ((Lisp_Object *)nil)[143] = terminal_io; ((Lisp_Object *)nil)[144] = trace_output; ((Lisp_Object *)nil)[145] = fasl_stream; ((Lisp_Object *)nil)[146] = native_code; ((Lisp_Object *)nil)[147] = native_symbol; ((Lisp_Object *)nil)[148] = traceprint_symbol; ((Lisp_Object *)nil)[149] = loadsource_symbol; ((Lisp_Object *)nil)[150] = hankaku_symbol; #ifdef COMMON ((Lisp_Object *)nil)[170] = keyword_package; ((Lisp_Object *)nil)[171] = all_packages; ((Lisp_Object *)nil)[172] = package_symbol; ((Lisp_Object *)nil)[173] = internal_symbol; ((Lisp_Object *)nil)[174] = external_symbol; ((Lisp_Object *)nil)[175] = inherited_symbol; ((Lisp_Object *)nil)[176] = key_key; ((Lisp_Object *)nil)[177] = allow_other_keys; ((Lisp_Object *)nil)[178] = aux_key; ((Lisp_Object *)nil)[179] = format_symbol; ((Lisp_Object *)nil)[180] = expand_def_symbol; ((Lisp_Object *)nil)[181] = allow_key_key; ((Lisp_Object *)nil)[182] = declare_symbol; ((Lisp_Object *)nil)[183] = special_symbol; #endif for (i=0; i<=50; i++) ((Lisp_Object *)nil)[work_0_offset+i] = workbase[i]; #endif /* NILSEG_EXTERNS */ ((Lisp_Object *)nil)[190] = user_base_0; ((Lisp_Object *)nil)[191] = user_base_1; ((Lisp_Object *)nil)[192] = user_base_2; ((Lisp_Object *)nil)[193] = user_base_3; ((Lisp_Object *)nil)[194] = user_base_4; ((Lisp_Object *)nil)[195] = user_base_5; ((Lisp_Object *)nil)[196] = user_base_6; ((Lisp_Object *)nil)[197] = user_base_7; ((Lisp_Object *)nil)[198] = user_base_8; ((Lisp_Object *)nil)[199] = user_base_9; } void copy_out_of_nilseg(int fg) { int i; Lisp_Object nil = C_nil; #ifdef NILSEG_EXTERNS if (fg) { byteflip = ((unsigned32 *)nil)[12]; codefringe = ((Lisp_Object *)nil)[13]; codelimit = ((Lisp_Object volatile *)nil)[14]; #ifdef COMMON stacklimit = *(Lisp_Object *volatile *)&((Lisp_Object *)nil)[16]; #else stacklimit = *(Lisp_Object *volatile *)&((Lisp_Object *)nil)[15]; #endif fringe = ((Lisp_Object *)nil)[18]; heaplimit = ((Lisp_Object volatile *)nil)[19]; vheaplimit = ((Lisp_Object volatile *)nil)[20]; vfringe = ((Lisp_Object *)nil)[21]; miscflags = ((unsigned32 *)nil)[22]; nwork = ((int32 *)nil)[24]; exit_reason = ((int32 *)nil)[25]; exit_count = ((int32 *)nil)[26]; gensym_ser = ((unsigned32 *)nil)[27]; print_precision = ((unsigned32 *)nil)[28]; current_modulus = ((int32 *)nil)[29]; fastget_size = ((int32 *)nil)[30]; package_bits = ((int32 *)nil)[31]; } current_package = ((Lisp_Object *)nil)[52]; B_reg = ((Lisp_Object *)nil)[53]; codevec = ((Lisp_Object *)nil)[54]; litvec = ((Lisp_Object *)nil)[55]; exit_tag = ((Lisp_Object *)nil)[56]; exit_value = ((Lisp_Object *)nil)[57]; catch_tags = ((Lisp_Object *)nil)[58]; lisp_package = ((Lisp_Object *)nil)[59]; boffo = ((Lisp_Object *)nil)[60]; charvec = ((Lisp_Object *)nil)[61]; sys_hash_table = ((Lisp_Object *)nil)[62]; help_index = ((Lisp_Object *)nil)[63]; gensym_base = ((Lisp_Object *)nil)[64]; err_table = ((Lisp_Object *)nil)[65]; supervisor = ((Lisp_Object *)nil)[66]; startfn = ((Lisp_Object *)nil)[67]; faslvec = ((Lisp_Object *)nil)[68]; tracedfn = ((Lisp_Object *)nil)[69]; prompt_thing = ((Lisp_Object *)nil)[70]; faslgensyms = ((Lisp_Object *)nil)[71]; cl_symbols = ((Lisp_Object *)nil)[72]; active_stream = ((Lisp_Object *)nil)[73]; current_module = ((Lisp_Object *)nil)[74]; append_symbol = ((Lisp_Object *)nil)[90]; applyhook = ((Lisp_Object *)nil)[91]; cfunarg = ((Lisp_Object *)nil)[92]; comma_at_symbol = ((Lisp_Object *)nil)[93]; comma_symbol = ((Lisp_Object *)nil)[94]; compiler_symbol = ((Lisp_Object *)nil)[95]; comp_symbol = ((Lisp_Object *)nil)[96]; cons_symbol = ((Lisp_Object *)nil)[97]; echo_symbol = ((Lisp_Object *)nil)[98]; emsg_star = ((Lisp_Object *)nil)[99]; evalhook = ((Lisp_Object *)nil)[100]; eval_symbol = ((Lisp_Object *)nil)[101]; expr_symbol = ((Lisp_Object *)nil)[102]; features_symbol = ((Lisp_Object *)nil)[103]; fexpr_symbol = ((Lisp_Object *)nil)[104]; funarg = ((Lisp_Object *)nil)[105]; function_symbol = ((Lisp_Object *)nil)[106]; lambda = ((Lisp_Object *)nil)[107]; lisp_true = ((Lisp_Object *)nil)[108]; lower_symbol = ((Lisp_Object *)nil)[109]; macroexpand_hook = ((Lisp_Object *)nil)[110]; macro_symbol = ((Lisp_Object *)nil)[111]; opt_key = ((Lisp_Object *)nil)[112]; prinl_symbol = ((Lisp_Object *)nil)[113]; progn_symbol = ((Lisp_Object *)nil)[114]; quote_symbol = ((Lisp_Object *)nil)[115]; raise_symbol = ((Lisp_Object *)nil)[116]; redef_msg = ((Lisp_Object *)nil)[117]; rest_key = ((Lisp_Object *)nil)[118]; savedef = ((Lisp_Object *)nil)[119]; string_char_sym = ((Lisp_Object *)nil)[120]; unset_var = ((Lisp_Object *)nil)[121]; work_symbol = ((Lisp_Object *)nil)[122]; lex_words = ((Lisp_Object *)nil)[123]; get_counts = ((Lisp_Object *)nil)[124]; fastget_names = ((Lisp_Object *)nil)[125]; input_libraries = ((Lisp_Object *)nil)[126]; output_library = ((Lisp_Object *)nil)[127]; current_file = ((Lisp_Object *)nil)[128]; break_function = ((Lisp_Object *)nil)[129]; lisp_work_stream = ((Lisp_Object *)nil)[130]; lisp_standard_output = ((Lisp_Object *)nil)[131]; lisp_standard_input = ((Lisp_Object *)nil)[132]; lisp_debug_io = ((Lisp_Object *)nil)[133]; lisp_error_output = ((Lisp_Object *)nil)[134]; lisp_query_io = ((Lisp_Object *)nil)[135]; lisp_terminal_io = ((Lisp_Object *)nil)[136]; lisp_trace_output = ((Lisp_Object *)nil)[137]; standard_output = ((Lisp_Object *)nil)[138]; standard_input = ((Lisp_Object *)nil)[139]; debug_io = ((Lisp_Object *)nil)[140]; error_output = ((Lisp_Object *)nil)[141]; query_io = ((Lisp_Object *)nil)[142]; terminal_io = ((Lisp_Object *)nil)[143]; trace_output = ((Lisp_Object *)nil)[144]; fasl_stream = ((Lisp_Object *)nil)[145]; native_code = ((Lisp_Object *)nil)[146]; native_symbol = ((Lisp_Object *)nil)[147]; traceprint_symbol = ((Lisp_Object *)nil)[148]; loadsource_symbol = ((Lisp_Object *)nil)[149]; hankaku_symbol = ((Lisp_Object *)nil)[150]; #ifdef COMMON keyword_package = ((Lisp_Object *)nil)[170]; all_packages = ((Lisp_Object *)nil)[171]; package_symbol = ((Lisp_Object *)nil)[172]; internal_symbol = ((Lisp_Object *)nil)[173]; external_symbol = ((Lisp_Object *)nil)[174]; inherited_symbol = ((Lisp_Object *)nil)[175]; key_key = ((Lisp_Object *)nil)[176]; allow_other_keys = ((Lisp_Object *)nil)[177]; aux_key = ((Lisp_Object *)nil)[178]; format_symbol = ((Lisp_Object *)nil)[179]; expand_def_symbol = ((Lisp_Object *)nil)[180]; allow_key_key = ((Lisp_Object *)nil)[181]; declare_symbol = ((Lisp_Object *)nil)[182]; special_symbol = ((Lisp_Object *)nil)[183]; #endif for (i = 0; i<=50; i++) workbase[i] = ((Lisp_Object *)nil)[work_0_offset+i]; #endif /* NILSEG_EXTERNS */ user_base_0 = ((Lisp_Object *)nil)[190]; user_base_1 = ((Lisp_Object *)nil)[191]; user_base_2 = ((Lisp_Object *)nil)[192]; user_base_3 = ((Lisp_Object *)nil)[193]; user_base_4 = ((Lisp_Object *)nil)[194]; user_base_5 = ((Lisp_Object *)nil)[195]; user_base_6 = ((Lisp_Object *)nil)[196]; user_base_7 = ((Lisp_Object *)nil)[197]; user_base_8 = ((Lisp_Object *)nil)[198]; user_base_9 = ((Lisp_Object *)nil)[199]; } /* end of restart.c */