Artifact 1d6f4d50fa2b588f6be759148dfc1906f3d052fddb096812fbc7fc8c79db6475:
- Executable file
r37/packages/specfn/fps.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2331) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/specfn/fps.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2331) [annotate] [blame] [check-ins using]
% Examples for the algorithmic calculation of formal % Puiseux, Laurent and power series, % % Wolfram Koepf, Freie Universitaet Berlin, Germany % (taken from the original paper and adapted to REDUCE % form by Winfried Neun, ZIB Berlin) % Formal Laurent series fps(E^x,x); fps(E^x/(x^3),x); fps(x * e^(x^4),x); fps(sin (x + y),x); simplede (sin x,x); %find a DE for sin simplede (sin (x)^2,x,w); % DE in w and x fps(asin x,x); fps((asin x)^2,x); fps(e^(asin x),x); fps(e^(asinh x),x); fps((x + sqrt(1+x^2))^A,x); fps(e^(x^2)*erf x,x); fps(e^x - 2 e^(-x/2) * cos(sqrt(3) * x/2 -pi/3),x); % fps(int(e^(-a^2*t^2) * cos(2*x*t),t,0,infinity),x) % not yet % fps(4/x * int(e^(t^2)*erf(t),t,0,sqrt(x)/2),x); fps(sin x * e^x,x); fps(cos x * e^(2*x),x); fps(1/(x-x^3),x); fps(1/(x^2 + 3 x + 2),x); fps(x/(1-x-x^2),x); % Logarithmic singularities and Puisieux series fps(sin sqrt x,x); fps(((1 + sqrt x)/x)^(1/3),x); fps(asech x,x); % some more (Wolfram Koepf, priv. comm.) fps((1+x)^alpha,x); fps((1+sqrt(1+x))^beta,x); fps(sin(x)^2+cos(x)^2,x); fps(sin(x)^2*cos(x)^2,x); fps(sin(x)*cos(x^2),x); fps((x-1)^(-1),x); fps(atan(x+y),x); fps((1-x^5)^6,x); fps(asec x,x); fps(besseli(0,x),x); fps(besseli(1,x),x); fps(exp(x^(1/3)),x); fps(log(1-x),x); fps(exp x*sinh x,x); fps(atan x,x); fps(sin x+sinh x,x); fps(sin x*sinh x,x); fps(int(erf(x),x),x); fps(sqrt(2-x),x); fps(sqrt(1+x)+sqrt(1-x),x); fps(exp(a+b*x)*exp(c+d*x),x); fps(1/cos(asin x),x); fps(sqrt(1-x^2)+x*asin x,x); fps(sqrt(1-sqrt(x)),x); fps(cos(n*acos x),x); fps(cos x+I*sin x,x); fps(cos(3*asinh x),x); fps(cos(n*asinh x),x); fps(sin(n*log(x+sqrt(1+x^2))),x); fps(sqrt(1+x^2)*asinh x-x,x); fps(int(erf(x)/x,x),x); fps(asin(x)^2/x^4,x); % we had problems here: fps(cos(asin x),x); fps(sinh(log x),x); fps(atan(cot x),x); % we can cure this one by defining the limit: let limit(atan(cot ~x),x,0) => pi/2; fps(atan(cot x),x); fps(exp(nnn*x)*cos(mmm*x),x); fps(sqrt(2-x^2),x); fps(ci x,x); fps(log(1-2*x*y+x^2),x); FPS(sin x,x,pi); % This one takes ages : %fps(acos(cos(x)),x); fps_search_depth := 7; % does not find aa DE with the default fps(sin(x^(1/3)),x); end;