Artifact 1cb1bc2e0f02f2193a48c32460b78bf4a5886fcaa251906ac8040a1082af1d3c:
- Executable file
r37/packages/plot/riemann.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2537) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/plot/riemann.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2537) [annotate] [blame] [check-ins using]
%Demonstration file for some Riemann surfaces % Caroline Cotter, ZIB,Berlin, 1998 %(with reference to paper:"Graphing Elementary Riemann Surfaces", % by Robert M. Corless & David J. Jeffrey, December 1997) load_package gnuplot; on complex; on demo; %The Riemann surface for w=arcsin(z) begin scalar w,x,y,z; w:=u+i*v; z:=sin(w); x:=repart(z); y:=impart(z); plot(point(x,y,u),u=(-pi ..pi),v=(-4 ..4),title= "The Arcsin Function",zlabel="u",view="75,50",points=30,hidden3d) end; %The Riemann surface for w=arccos(z) begin scalar w,x,y,z; w:=u+i*v; z:=cos(w); x:=repart(z); y:=impart(z); plot(point(x,y,u),u=(-pi ..pi),v=(-4 ..4),title= "The Arccos Function",zlabel="u",view="75,50",points=30,hidden3d) end; %The Riemann surface for w=arctan(z) begin scalar w,x,y,z; w:=u+i*v; z:=tan(w); x:=repart(z); y:=impart(z); plot(point(x,y,u),u=(-pi ..pi),v=(-2 ..2),title= "The Arctan Function",zlabel="u",view="80,30",points=40) end; %The Riemann surface for w=z^(1/2) %(a) With Cartesian coordinates parameterization begin scalar w,x,y,z; w:=u+i*v; z:=w^2; x:=repart(z); y:=impart(z); plot(point(x,y,v),u=(-2 ..2),v=(-2 ..2), title= "The Squareroot Function (a)",zlabel="v",view="60,60",points=30,hidden3d) end; %(b) With polar coordinates parameterization begin scalar w,x,y; w:=r*cos(theta) + i*r*sin(theta); x:=r^2*cos(2*theta); y:=r^2*sin(2*theta); plot(point(x,y,impart(w)),r=(0 .. 1.5),theta=(-2*pi ..2*pi), title="The Squareroot Function (b)",view="70,50",points=50,hidden3d) end; %The Riemann surface for w=z^(1/3) %(a) With Cartesian coordinates parameterization begin scalar w,x,y,z; w:=u+i*v; z:=w^3; x:=repart(z); y:=impart(z); plot(point(x,y,v),u=(-2 ..2),v=(-2 ..2), title="The Cuberoot Function (a)",zlabel="v",view="50,60",hidden3d) end; %(b) With polar coordinates parameterization begin scalar w,x,y; w:=r*cos(theta) + i*r*sin(theta); x:=r^3*cos(3*theta); y:=r^3*sin(3*theta); plot(point(x,y,impart(w)),r=(0 .. 1.5),theta=(-2*pi ..2*pi), title="The Cuberoot Function (b)",view="70,100",points=50,hidden3d) end; %The Riemann surface for w=z^(2/3) begin scalar w,x,y; w:=r*cos(theta) + i*r*sin(theta); x:=r^(3/2)*cos((3/2)*theta); y:=r^(3/2)*sin((3/2)*theta); plot(point(x,y,impart(w)),r=(0 .. 1.5),theta=(-2*pi ..2*pi), title="The Cuberoot-squared Function",view="65,280",points=40,hidden3d) end;