Artifact 1b9d7b4caa736e70062a74ffb601c33ddea70f2ec7d459d6821b0aaae5d803c6:
- File
r35/src/specfn.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 106601) [annotate] [blame] [check-ins using] [more...]
module specfn; % Special functions package for REDUCE. % Author: Chris Cannam, Sept-Nov 1992. % Winfried Neun, Nov 1992 ... % |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| % % % % Please report bugs to Winfried Neun, % % Konrad-Zuse-Zentrum % % fuer Informationstechnik Berlin, % % Heilbronner Str. 10 % % 10711 Berlin - Wilmersdorf % % Federal Republic of Germany % % or by email, neun@sc.ZIB-Berlin.de % % % % |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| % % % % This package provides algebraic and numeric % % manipulations upon various special functions: % % % % -- Bernoulli Numbers % % -- Gamma Function % % -- Pochhammer Notation % % -- Digamma (Psi) Function and Derivatives % % -- Riemann Zeta Function % % -- Bessel Functions J, Y, I and K % % -- Hankel Functions H1 and H2 % % -- Kummer Hypergeometric Functions M and U % % -- Struve, Lommel and Whittaker Functions % % -- Integral funtions, Si, Ci, s_i (=si), Ei,... % % % accessible through the new operators Bernoulli, Gamma, % % Pochhammer, Psi, Polygamma, Zeta, BesselJ, BesselY, % % BesselI, BesselK, Hankel1, Hankel2, KummerM, KummerU, % % Beta, StruveL, StruveH, Lommel1, Lommel2, WhittakerM % % and WhittakerW, with the new switch SaveSFs. % % % % |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| % % load!-package 'arith; % For bootstrapping purposes. create!-package ('(specfn sfgen sfbern sfgamma sfpsi sfbes sfkummer sfother dilog sfbinom sfpolys sfsums sfint), '(contrib specfn)); exports sq2bf!*, c!:prec!:; switch savesfs; on savesfs; symbolic fluid '(bernoulli!-alist new!*bfs bf!*base sf!-alist !*savefs); symbolic ( bernoulli!-alist := nil ); symbolic ( sf!-alist := nil ); symbolic ( new!*bfs := fluidp '!:bprec!: ); symbolic ( bf!*base := (if new!*bfs then 2 else 10) ); symbolic ( if not globalp 'log2of10 then << global '(log2of10); log2of10 := 3.32193 >> ); symbolic smacro procedure sq2bf!*(x); (if fixp x then i2bf!: x else ((if car y neq '!:rd!: then retag cdr !*rn2rd y else retag cdr y) where y = !*a2f x)); symbolic smacro procedure c!:prec!:; (if new!*bfs then lispeval '!:bprec!: else !:prec!:); algebraic array stieltjes (5); % for use in raw zeta computations algebraic array stf (5); algebraic array psi!*ld (1); algebraic (psi!*ld(0) := -1); % precision at which last psi was calc'd algebraic (psi!*ld(1) := 0); % lowest post-scale value acceptable at % that precision % These functions are needed in other modules. algebraic procedure complex!*on!*switch; if not symbolic !*complex then if symbolic !*msg then << off msg; on complex; on msg >> else on complex else t; algebraic procedure complex!*off!*switch; if symbolic !*complex then if symbolic !*msg then << off msg; off complex; on msg >> else off complex else t; algebraic procedure complex!*restore!*switch(fl); if not fl then if symbolic !*msg then << off msg; if symbolic !*complex then off complex else on complex; on msg >> else if symbolic !*complex then off complex else on complex; endmodule; module sfgen; % Handy functions used by the special functions package. % Author: Chris Cannam. exports sq2bf!*,bfprin!:roundup,sf!*eval; symbolic procedure sf!*assoc(compare,val,alist); (if null alist then nil else if not lispeval list(compare,car car alist,val) then car alist else sf!*assoc(compare,val,cdr alist)); symbolic procedure sf!*multi!*assoc!*comparator(compare,vals,entry); (if null entry then (null vals) else (not null vals) and (lispeval list(compare,list('quote,car vals), list('quote,car entry))) and (sf!*multi!*assoc!*comparator(compare,cdr vals,cdr entry))); symbolic procedure sf!*multi!*assoc(compare,vals,alist); (if null alist then nil else if sf!*multi!*assoc!*comparator(compare,vals,car car alist) then car alist else sf!*multi!*assoc(compare,vals,cdr alist)); symbolic procedure sf!*do!*eval(expression); begin scalar prepre, result; prepre := precision 0; precision (prepre + 3); result := aeval expression; precision prepre; return result; end; % It's a finite state automaton! It's a big nested if..then..else % construct! It's repulsive repetitive code! It's easy to compile % and run quickly! It's longer than it needs to be! It's all of % this and more...! (But at least it works.) symbolic procedure sf!*eval(name,args); begin scalar part1, part2, result, prepre; args := cdr args; if (part1 := assoc((name . !*complex),sf!-alist)) then if (part2 := sf!*assoc('lessp,c!:prec!:(),cdr part1)) then if (result := sf!*multi!*assoc('evalequal,args,cdr part2)) then result := cdr result else if !*savesfs then setq(cdr part2, (args . (result := sf!*do!*eval(name . args))) . cdr part2) else result := sf!*do!*eval(name . args) else if !*savesfs then setq(cdr part1, (c!:prec!:() . list ((args . (result := sf!*do!*eval(name . args))))) . cdr part1) else result := sf!*do!*eval(name . args) else if !*savesfs then sf!-alist := ((name . !*complex) . list ((c!:prec!:() . list ((args . (result := sf!*do!*eval(name . args)) ))))) . sf!-alist else result := sf!*do!*eval(name . args); return result; end; endmodule; module sfbern; % Procedures for computing Bernoulli numbers. % % Author: Chris Cannam, Oct 1992. % Module for Euler numbers added by Kerry Gaskell, Sep 1993 % % Note there is currently no Bernoulli polynomial function. % There was one in an older version but it won't convert directly. % This is Something To Be Done. fluid '(compute!-bernoulli); imports complex!*on!*switch, complex!*off!*switch, complex!*restore!*switch; exports nearest!-int!-to!-bf, bernoulli!*calc, multi!*bern, single!*bern, retrieve!*bern; algebraic operator bernoulli; symbolic operator bernoulli!*calc; algebraic (bernoullirules := { bernoulli(~n) => 1 when numberp n and n = 0, bernoulli(~n) => -1/2 when numberp n and n = 1, bernoulli(~n) => 0 when numberp n and impart n = 0 and n = floor n and n/2 neq floor (n/2) and n > 0, bernoulli(~n) => bernoulli!*calc n when numberp n and impart n = 0 and n = floor n and n > 0 })$ algebraic (let bernoullirules); algebraic procedure bernoulli!*calc n; begin scalar precom, result, prepre; % Loading the SPECFAUX module will do two things. First it will % set compute!-bernoulli to true, so that there is no future attempt % to load it. Then it will set up a table of values in the variable % bernoulli!-alist, where the table is computed at compile time rather % than load or run-time. This will make compiling specfaux.red a fairly % slow process. It also has bad consequences for any attempt to run % this code interpreted. % Note: ACN find the "algebraic symbolic" stuff here pretty heavy % and confusing, but without it REDUCE sticks in calls to aeval (etc) % in places where that is not wanted. Maybe a future version of the % language will make mixed algebraic/symbolic mode code less delicate. if (lisp null compute!-bernoulli) then symbolic <<errorset!*('(load_package '(specfaux)), nil); nil>>; precom := complex!*off!*switch(); if (prepre := precision(0)) < !!nfpd then precision (!!nfpd + 1); result := algebraic symbolic retrieve!*bern(n); precision prepre; complex!*restore!*switch(precom); return result; end; symbolic procedure retrieve!*bern n; begin scalar info, result; integer heldpre; info := assoc(n, bernoulli!-alist); if not info then result := bern!*calc (n, '(() () ())) else << info := cdr info; if !*rounded then if (heldpre := cadr info) and heldpre >= c!:prec!:() then result := mk!*sq !*f2q rd!:prep caddr info else if (result := car info) then result := mk!*sq !*f2q mkround divbf(i2bf!: caadr result, i2bf!: cdadr result) else result := bern!*calc(n, info) else if not (result := car info) then result := bern!*calc(n,info) >>; return result; end; symbolic procedure bern!*calc(n, info); begin scalar result; result := single!*bern(n/2); if !*rounded then info := list (car info, c!:prec!:(), result) else info := list (result, cadr info, caddr info); bernoulli!-alist := (n . info) . bernoulli!-alist; return result; end; % % Computation of Bernoulli numbers using the algorithms of % one Herbert S. Wilf, presented by Sandra Fillebrown in the % Journal of Algorithms 13 (1992) % % Chris Cannam, October 1992 % % % Useful auxiliary fn. % symbolic procedure nearest!-int!-to!-bf(x); (conv!:bf2i rb) where rb = (if lessp!:(x,bfz!*) then difference!:(x,bfhalf!*) else plus!:(x,bfhalf!*)); % % Procedure to compute B(2k) for k = 2 ... n % % Returns list of even bernoullis from B(4) to B(2n), % in reverse order; only works when compiled, owing % to reliance upon msd!:, which is a compiled inline % macro. % % If called with rounded mode off, it computes the % exact quotient; otherwise it will usually approximate % (to the correct precision) if it saves time to do so. % symbolic procedure multi!*bern(n); begin scalar results, primes, tprimes, r0, rk, rkm1, b2k, tpi, pie, tk, n2k; integer thisp, gn, prepre, prernd, p2k, k2, plim, d2k; results := nil; prernd := !*rounded; if not prernd then on rounded; prepre := precision 0; if new!*bfs then << gn := 2 * n * msd!: n; if gn < (log2of10*!!nfpd) then precision (!!nfpd + 2) else if prepre > (gn/3) or not prernd then precision (gn/3 + 1) else precision (prepre + 2) >> else << gn := 2 * n * length explode n; if gn < !!nfpd then precision (!!nfpd + 2) else if prepre > gn or not prernd then precision (gn + 2) else precision (prepre + 2) >>; tpi := pi!*(); pie := divbf(bfone!*, timbf(tpi, e!*())); if n < 1786 then primes := !*primelist!* else << primes := nil; for thisp := 3573 step 2 until (2*n + 1) do if primep thisp then primes := thisp . primes; primes := append(!*primelist!*, reverse primes) >>; r0 := sq2bf!* algebraic ((2*pi)**(-2)); rkm1 := timbf(i2bf!: 4, r0); for k := 2:n do << k2 := 2*k; rk := timbf(i2bf!:(k2*(k2 - 1)), timbf(r0, rkm1)); rkm1 := rk; tk := bfone!*; d2k := 1; plim := 1 + conv!:bf2i timbf(i2bf!: k2, pie); tprimes := cdr primes; thisp := car primes; while thisp <= plim do << p2k := thisp ** k2; tk := timbf(tk, divbf(i2bf!: p2k, i2bf!: (p2k - 1))); thisp := car tprimes; tprimes := cdr tprimes >>; tprimes := cdr primes; thisp := car primes; while thisp <= k+1 do << if cdr divide (k2, thisp - 1) = 0 then d2k := d2k * thisp; thisp := car tprimes; tprimes := cdr tprimes >>; if primep (k2 + 1) then d2k := d2k * (k2 + 1); n2k := timbf(timbf(rk, tk), i2bf!: d2k); if prernd then b2k := mk!*sq !*f2q mkround divbf (i2bf!: (((-1)**(k+1)) * nearest!-int!-to!-bf n2k), i2bf!: d2k) else b2k := list ('!*sq, (((-1)**(k+1)) * nearest!-int!-to!-bf n2k) . d2k, t); results := b2k . results >>; precision prepre; if not prernd then off rounded; return results; end; % % Procedure to compute B(2n). If it is called with rounded % mode off, it computes the exact quotient; otherwise it % will approximate (to the correct precision) whenever it % saves time to do so. % symbolic procedure single!*bern(n); begin scalar result, primes, tprimes, rn, tn, n2n, pie; integer d2n, thisp, gn, prepre, prernd, p2n, n2, plim; prernd := !*rounded; if not prernd then on rounded; prepre := precision 0; if new!*bfs then << gn := 2 * n * msd!: n; if gn < (log2of10*!!nfpd) then precision (!!nfpd + 2) else if prepre > (gn/3) or not prernd then precision (gn/3 + 1) else precision (prepre + 2) >> else << gn := 2 * n * length explode n; if gn < !!nfpd then precision (!!nfpd + 2) else if prepre > gn or not prernd then precision (gn + 1) else precision (prepre + 2) >>; pie := divbf(bfone!*, timbf(pi!*(), e!*())); if n < 1786 then primes := !*primelist!* else << primes := nil; for thisp := 3573 step 2 until (2*n + 1) do if primep thisp then primes := thisp . primes; primes := append(!*primelist!*, reverse primes) >>; n2 := 2*n; rn := divbf(i2bf!: (2 * factorial n2), sq2bf!* algebraic ((2*pi)**(n2))); tn := bfone!*; d2n := 1; plim := 1 + conv!:bf2i timbf(i2bf!: n2, pie); tprimes := cdr primes; thisp := car primes; while thisp <= plim do << p2n := thisp ** n2; tn := timbf(tn, divbf(i2bf!: p2n, i2bf!: (p2n - 1))); thisp := car tprimes; tprimes := cdr tprimes >>; tprimes := cdr primes; thisp := car primes; while thisp <= n+1 do << if cdr divide (n2, thisp - 1) = 0 then d2n := d2n * thisp; thisp := car tprimes; tprimes := cdr tprimes >>; if primep (n2 + 1) then d2n := d2n * (n2 + 1); n2n := timbf(timbf(rn, tn), i2bf!: d2n); precision prepre; if prernd then result := mkround divbf(i2bf!: (((-1)**(n+1)) * nearest!-int!-to!-bf n2n), i2bf!: d2n) else << off rounded; result := list ('!*sq, (((-1)**(n+1)) * nearest!-int!-to!-bf n2n) . d2n, t) >>; return result; end; % Euler numbers module by Kerry Gaskell algebraic operator euler; algebraic let { euler(0) => 1, euler(~n) => euler_aux(n) when fixp n and n > 0}; % A function to calculate the Euler numbers. symbolic fluid '(euler_list); euler_list := nil; flag ('(euler_aux),'opfn); symbolic procedure euler_aux(n); begin scalar result; if n = 0 then result := 1 else if not evenp(n) then result := 0 % If n is an odd number then its % Euler number is zero. else if n = 2 then result := -1 else if n = 4 then result := 5 else if (result := assoc(n,euler_list)) then result := cdr result else if remainder(n,4) neq 0 then << result := - (for k:= 1:floor(n/4) sum ((euler_aux(n-2k) + euler_aux(n-(n-2k))) *algebraic(binomial(n,2k)))) -1; euler_list:= cons((n . result), euler_list) >> else << result := - (for k:= 1:n/4 - 1 sum ((euler_aux(n-2k) + euler_aux(n-(n-2k))) *algebraic(binomial(n,2k)))) - euler_aux(n/2)*algebraic(binomial(n,n/2)) -1; euler_list:= cons((n . result), euler_list) >>; return result; end; endmodule; module sfgamma; % Gamma function procedures and rules for REDUCE. % Author: Chris Cannam, Sept/Oct '92 imports complex!*on!*switch, complex!*off!*switch, complex!*restore!*switch, sf!*eval; exports do!*gamma, do!*pochhammer, do!*poch!*conj!*calc; % % Rule set for the gamma function. % % % Comments: % % Base cases are provided for gamma(1) and gamma(1/2). % The rules will convert gammas to factorials where appropriate. % A numerical value is always computed if rounded mode is on. % algebraic operator gamma; symbolic (operator do!*gamma); algebraic (gamma!*rules := { gamma(~x) => 1 when numberp x and x = 1, gamma(~x) => sqrt(pi) when numberp x and x = (1/2), gamma(~x) => factorial (x-1) when numberp x and impart x = 0 and x = floor x and x > 0, gamma(~x) => infinity when numberp x and impart x = 0 and x = floor x and x < 1, gamma(~x) => gamma(x-1) * (x-1) when numberp x and not symbolic !*rounded and impart x = 0 and (64*x) = floor(64*x) and x > 1 and x < 50, gamma(~x) => pi / (sin(pi*x) * gamma(-x) * (-x)) when numberp x and x < 0, gamma(~x) => do!*gamma(x) when numberp x and symbolic !*rounded, df(gamma(~x), x) => gamma(x) * psi(x) })$ algebraic (let gamma!*rules); algebraic operator beta; algebraic (beta!*rules := { beta(~z,~w) => (gamma(z) * gamma(w)) / gamma(z+w) when (numberp z and numberp w and impart z = 0 and impart w = 0 and not ((z = floor z and z < 1) or (w = floor w and w < 1) or (z+w = floor (z+w) and (z+w) < 1))) or (numberp z and numberp w and (impart z neq 0 or impart w neq 0)) or not (numberp z and numberp w), beta(~z,~w) => 0 when numberp z and numberp w and impart z = 0 and impart w = 0 and not ((z = floor z and z < 1) or (w = floor w and w < 1)) and (z+w = floor (z+w) and (z+w) < 1), beta(~z,~w) => infinity when numberp z and numberp w and impart z = 0 and impart w = 0 and ((z = floor z and z < 1) or (w = floor w and w < 1)) and not (z+w = floor (z+w) and (z+w) < 1) })$ algebraic (let beta!*rules); Comment Ruleset for calculating the Pochhammer symbol Author: Wolfram Koepf, Freie Universitaet Berlin 1992, Translated to Reduce syntax by Winfried Neun, ZIB Berlin. Made generally safer (and uglier) by Chris Cannam, ZIB. ; algebraic operator pochhammer; symbolic (operator do!*pochhammer, do!*poch!*conj!*calc); algebraic (pochhammer!*rules := { pochhammer(~z,~k) => 1 when numberp k and k = 0, pochhammer(~z,~k -1) => 2 * pochhammer(1/2,k) / (2*k -1) when numberp z and z = 1/2, pochhammer(~a,~k) => factorial(2k)/((4^k) * factorial(k)) when numberp a and a = 1/2, pochhammer(~n,~k) => do!*pochhammer(n,k) when numberp n and numberp k and impart n = 0 and impart k = 0 and n = floor n and k = floor k and n > -1 and k > 0, pochhammer(~a,~k) => do!*pochhammer(a,k) when symbolic !*rounded and numberp k and numberp a and impart a = 0 and impart k = 0 and ((a neq floor a) or (a > 0)) and k = floor k and k > 0, pochhammer(~n,~k) => (-1)^k * factorial(-n) / factorial(-n-k) when numberp n and numberp k and impart n = 0 and n = floor n and n < 1 and (-n-k) >= 0, pochhammer(~a,~k) => pochhammer(2*a-1,2k)/((4^k) * pochhammer((2 a -1)/2,k)) when numberp a and impart a = 0 and (a+1/2) = floor (a+1/2) and a > 0}); algebraic (special!*pochhammer!*rules := { % these special rules are normally disabled because % they produce a lot of load for the algebraic mode pochhammer(~a,~k)*pochhammer(~b,~k) => pochhammer(2a,2k)/(4^k) when (b-a)=1/2, pochhammer(~a,~k) => (-1)^(-a+1/2) * pochhammer(1-a-(-a+1/2),-a+1/2) * pochhammer(a +(-a +1/2),k-(-a+1/2)) when numberp a and impart a = 0 and (a+1/2) = floor (a+1/2) and a<0, pochhammer(~z,~k) * pochhammer(~cz,~k) => do!*poch!*conj!*calc(z,k) when numberp z and numberp cz and numberp k and not(impart z = 0) and z = conj cz and impart k = 0 and k = floor k and k >= 0, pochhammer(~a,~k)*pochhammer(~aa,~k) => factorial(3 k)/(factorial(k) * 27^k) when numberp a and a = 1/3 and numberp aa and aa = 2/3, pochhammer(~a,~k) * pochhammer(~aa,~k) => factorial(1 + 3 k)/(27 ^k * factorial(k)) when numberp a and a = 2/3 and numberp aa and aa = 4/3, pochhammer(~b,~k) * pochhammer(~c,~k) => pochhammer(3*b,3*k)/( 27^k * pochhammer(b +2/3,k)) when numberp b and numberp c and (c-b)=1/3 and (b-1/3) = floor (b-1/3) and not (b-1/3 = 0), pochhammer(~a,~k)*pochhammer(~aa,~k)*pochhammer(~aaa,~k) => factorial(4*k)/(factorial(k) * 64^k) when numberp a and numberp aa and numberp aaa and a = 1/4 and aa = 1/2 and aaa = 3/4, pochhammer(~a,~k)*pochhammer(~aa,~k)* pochhammer(~aaa,~k)*pochhammer(~aaaa,~k) => factorial(5*k)/(factorial(k) * 3125^k) when numberp a and numberp aa and numberp aaa and numberp aaaa and a = 1/5 and aa = 2/5 and aaa = 3/5 and aaaa = 4/5, pochhammer(~a,~k)*pochhammer(~aa,~k)* pochhammer(~aaa,~k)*pochhammer(~aaaa,~k) => 5*(1/5 +k)*factorial(5*k)/(factorial(k) * 3125^k) when numberp a and numberp aa and numberp aaa and numberp aaaa and a = 2/5 and aa = 3/5 and aaa = 4/5 and aaaa = 6/5, pochhammer(~a,~k)*pochhammer(~aa,~k)* pochhammer(~aaa,~k)*pochhammer(~aaaa,~k) => (25 *(1/5+k)*(2/5 +k)*factorial(5*k)) / (factorial(k) * 2* 3125^k) when numberp a and numberp aa and numberp aaa and numberp aaaa and a = 3/5 and aa = 4/5 and aaa = 6/5 and aaaa = 7/5, pochhammer(~a,~k)*pochhammer(~aa,~k)* pochhammer(~aaa,~k)*pochhammer(~aaaa,~k) => (125*(1/5+k)*(2/5+k)*(3/5+k)*factorial(5*k)) / (factorial(k) * 6 *3125^k) when numberp a and numberp aa and numberp aaa and numberp aaaa and a = 4/5 and aa = 6/5 and aaa = 7/5 and aaaa = 8/5, pochhammer(~a,~k)*pochhammer(~aa,~k)* pochhammer(~aaa,~k)*pochhammer(~aaaa,~k) => (625*(1/5+k)*(2/5+k)*(3/5+k)*(4/5+k)*factorial(5*k)) / (factorial(k) * 24 *3125^k) when numberp a and numberp aa and numberp aaa and numberp aaaa and a = 6/5 and aa = 7/5 and aaa = 8/5 and aaaa = 9/5 % %Pochhammer(~a,~k)//Pochhammer(~b,~k) => % (a + k -1)/(a - 1) % when (a - b)=1, % %Pochhammer(~a,~k)//Pochhammer(~b,~k) => % (b - 1)/(b + k -1) % when (b - a)=1, % })$ algebraic (let pochhammer!*rules); algebraic procedure do!*gamma(z); (if impart z = 0 then algebraic sf!*eval('gamma!*calc!*s,{z}) else algebraic sf!*eval('gamma!*calc,{z})); algebraic procedure gamma!*calc!*s(z); begin scalar scale, result, alglist!*; integer p, precom; precom := complex!*off!*switch(); p := precision(0); op := lisp c!:prec!:(); if p < !!nfpd then precision (!!nfpd + 1); % else precision(p+3); if p > 49 then scale := 500 + p else scale := 10 * (p+1); if z > scale then scale := 2; result := gamma!*calc!*s!*sub(z,scale,op); precision p; complex!*restore!*switch(precom); return result; end; algebraic procedure gamma!*calc!*s!*sub(z,scale,op); begin scalar za, z1, result; integer z0; za := z; z0 := floor (z+1); z1 := z + scale; result := algebraic symbolic log!*gamma(z1,z0); result := (exp result / pochhammer(z,scale)); return result; end; symbolic procedure log!*gamma(z, zint); begin scalar result, this, zpwr, zsq, admissable, abk; integer k, adep, famt, rp, orda, magn; magn := bf!*base ** c!:prec!:(); if zint < 1000 then if new!*bfs then admissable := divbf (i2bf!: msd!: (1 + (factorial zint / 3)), i2bf!: magn) else admissable := divbf (i2bf!: length explode factorial zint, i2bf!: magn) else admissable := divbf (difbf(log!:(timbf(plubf(bftwo!*,bfhalf!*), sqrt!:(exptbf(i2bf!: zint,2*zint+1,bfone!*),8)),8), i2bf!: zint),i2bf!: magn); z := sq2bf!* z; result := timbf(log!* z, difference!:(z, bfhalf!*)); result := plubf((difference!: (result, z)), timbf(bfhalf!*, log!* timbf(pi!*(), bftwo!*))); this := plubf (admissable, bfone!*); rp := c!:prec!:(); orda := order!: admissable - 5; k := 2; zpwr := z; zsq := timbf (z, z); while greaterp!:(abs!: this, admissable) do << abk := retag cdr !*a2f retrieve!*bern k; this := divide!: (abk, timbf (i2bf!: (k * (k-1)), zpwr), rp); rp := order!: this - orda; result := plubf(result, this); zpwr := timbf (zpwr, zsq); k := k + 2; >>; return mk!*sq !*f2q mkround result; end; % % algebraic procedure loggamma!*calc!*sub(z); % % Procedure to calculate ln(gamma(z)); returns a 2-list of % the value of ln(gamma) and the final term used in the % constructing series. (This term is used by gamma!*calc!*sub % to compute the error.) % % Also requires to be fed the indices for the first and last % terms to be used in constructing the portion of the % series that it will construct. Both of these values should % be even; if the first term's index is 2, then the initial % terms to construct the log gamma will also be included. % algebraic procedure loggamma!*calc!*sub(z, premier, dernier); begin scalar result, ft, sofar, div; if premier = 2 then result := ((z - (1/2)) * log z) - z + ((1/2) * log (2*pi)) else result := 0; sofar := z ** (dernier-1); div := z ** 2; result := result + (ft := (bernoulli!*calc(dernier) / ((dernier -1) * dernier * sofar))); for n := (dernier-2) step -2 until premier do << sofar := sofar / div; result := result + (bernoulli!*calc(n) / (n * (n-1) * sofar)) >>; return { result, ft }; end; % % algebraic procedure gamma!*calc!*sub(z,scale); % % Procedure to calculate values of gamma. Given the value % at which to calculate and the amount by which to scale % up in calculation, returns (eventually) a 2-list of the value % of gamma and the maximum error on this value. Needs a % better interface -- see the gamma!*calc procedure, below. % algebraic procedure gamma!*calc!*sub(z,scale); begin scalar result, expresult, ft, err, newerr, rescale, admissable, alglist!*; integer prepre, premier, dernier; prepre := precision(0); % precision (prepre + 4); rescale := for k := 1:scale product (z+k-1); admissable := 1 / (10 ** (prepre + 4)); err := admissable + 1; premier := 2; dernier := 50; result := 0; while (err > admissable) do << ft := loggamma!*calc!*sub(z+scale, premier, dernier); result := result + first ft; ft := second ft; expresult := exp result; newerr := (abs ((expresult/(exp ft)) - expresult))/rescale; if newerr > err or (dernier > 180 and newerr > (admissable * 1000)) then << scale := scale * 3; rescale := (for m := 1:scale product (z+m-1)); write ("Scaling up to scale=", scale, " (from ", scale/3, ")"); result := 0; premier := 2; dernier := 100; err := admissable + 1 >> else << err := newerr; premier := dernier + 2; dernier := dernier + 30 >> ; >>; result := expresult / rescale; % precision prepre; return { result, err }; end; % % algebraic procedure gamma!*calc(z); % % Procedure to calculate values of gamma to (one hopes) % an error within the tolerance allowed by the current % precision. Calls gamma!*calc!*sub (above) with a scale worked % out by slightly ad-hoc (but apparently fairly good) methods % and will be generally OK for z between 1e-7 and infinity. % % Only works for positive z, and only in rounded mode. % algebraic procedure gamma!*calc(z); if precision(0) > 49 then first gamma!*calc!*sub(z,500+4*precision(0)) else first gamma!*calc!*sub(z, ceiling (exp(precision(0)/10) * 2)); % % Functions to compute Pochhammer(a,k). % algebraic procedure do!*pochhammer(a,k); algebraic sf!*eval('pochhammer!*calc,{a,k}); algebraic procedure do!*poch!*conj!*calc(z,n); algebraic sf!*eval('poch!*conj!*calc,{z,n}); algebraic procedure pochhammer!*calc(a,k); (if fixp a and not symbolic !*rounded then (symbolic fac!-part(a, a+k-1)) else pochhammer!*calc!*sub(a,k)); algebraic procedure pochhammer!*calc!*sub(a,k); begin scalar result, prepre, precom, a0; precom := complex!*off!*switch(); prepre := precision 0; if prepre < !!nfpd then precision (1+!!nfpd); a0 := a; result := if (symbolic new!*bfs) then algebraic symbolic pochhammer!*calc!*sub!*sub!*newbf(a,k) else algebraic symbolic pochhammer!*calc!*sub!*sub!*oldbf(a,k); precision prepre; complex!*restore!*switch(precom); return result; end; symbolic procedure pochhammer!*calc!*sub!*sub!*oldbf(a,k); begin scalar result; if fixp a then result := poch!*sub!*2(0, k-1, i2bf!: a) else << a := sq2bf!* a; if order!: a < - !:prec!: then result := poch!*sub!*2(0, k-1, bfone!*) else if length explode mt!: a < !:prec!:/2 and order!: a > -2 then result := poch!*sub!*2(0, k-1, a) else result := poch!*sub!*1(a, k-1,bfone!*)>>; return mk!*sq !*f2q mkround result; end; symbolic procedure pochhammer!*calc!*sub!*sub!*newbf(a,k); begin scalar result; if fixp a then result := poch!*sub!*2(0, k-1, i2bf!: a) else << a := sq2bf!* a; if order!: a < - c!:prec!:() then result := poch!*sub!*2(0, k-1, bfone!*) else if preci!: a < c!:prec!:()/2 and order!: a>-2 then result := poch!*sub!*2(0, k-1, a) else result := poch!*sub!*1(a,k-1,bfone!*)>>; return mk!*sq !*f2q result; end; symbolic procedure poch!*sub!*1(a,k,tot); if k=0 then timbf(tot,a) else poch!*sub!*1(plus!:(a,bfone!*),k-1,timbf(tot,a)); symbolic procedure poch!*sub!*2(m,n,a); if m=n then plus!:(a,i2bf!: m) else if m = n-1 then timbf(plus!:(a,i2bf!: m), plus!:(a,i2bf!: n)) else (timbf(poch!*sub!*2(m,p,a),poch!*sub!*2(p+1,n,a))) where p=(m+n)/2; algebraic procedure poch!*conj!*calc(z,n); for i := 1:n product ((repart z + (i-1))**2 + (impart z)**2); endmodule; module sfpsi; % Procedures relevant to the digamma, polygamma & zeta % functions. % Author: Chris Cannam, Sept/Oct '92. % Added: PSI_SIMP.RED F.J.Wright, 2 July 1993 % The polygamma rules are addded by Y.K. Man on 9 July 1993 % Yiu K. Man's email is: myk@maths.qmw.ac.uk imports sq2bf!*, sf!*eval; exports do!*psi, do!*polygamma, do!*trigamma!*halves, do!*zeta, do!*zeta!*pos!*intcalc; % % A couple of global values are used (from specfns.red) which can speed % up psi calculations (a bit) when repeated calculations are made at the % same level of precision. % % Here's an approximation sufficiently good for most purposes % (assuming it's right, that is); if it isn't good enough, it % won't be used. This approximation is to 506 dec. places. % algebraic (old!*precision := precision(0)); precision 510; algebraic procedure get!-eulers!-constant(a); << a := 577215664901532860606512090082402431 * 10^40 + 0421593359399235988057672348848677267776; a := a * 10^40 + 6467093694706329174674951463144724980708; a := a * 10^40 + 2480960504014486542836224173997644923536; a := a * 10^40 + 2535003337429373377376739427925952582470; a := a * 10^40 + 9491600873520394816567085323315177661152; a := a * 10^40 + 8621199501507984793745085705740029921354; a := a * 10^40 + 7861466940296043254215190587755352673313; a := a * 10^40 + 9925401296742051375413954911168510280798; a := a * 10^40 + 4234877587205038431093997361372553060889; a := a * 10^40 + 3312676001724795378367592713515772261027; a := a * 10^40 + 3492913940798430103417771778088154957066; a := a * 10^30 + 107501016191663340152278935868; a := a * (10**(-506)) >>; algebraic (euler!*constant := get!-eulers!-constant(0)); algebraic precision old!*precision; algebraic clear old!*precision; % % Define some suitable rules for initial simplification of psi % (digamma) function expressions. % % Comments: % % When rounded mode is on, psi(number) is always computed % directly unless it simplifies to an expression in psi(1/2) or % psi(1), in which case it is simplified. Expressions in psi(1/2) % and psi(1) are expanded into expressions in euler!*constant. % If, however, the precision is greater than 500, then % euler!*constant is not stored sufficiently precisely, and all % such expressions will be computed without simplification. % % When rounded mode is off, psi(number) will _never_ be expanded % into an expression involving euler!*constant, but will always % be expanded into some form involving psi(p), where 0<p<1. % It should be borne in mind that computations which will need % numerical results could do without such expansion, and there- % fore such computations should be performed in rounded mode % as soon as possible. % % Expressions for the derivative and integral of psi are included. % algebraic operator psi, polygamma; symbolic operator psi!*calc; algebraic (psi!*rules := { psi(~x,~xx) => polygamma(x,xx), psi(~z) => infinity when repart z = floor repart z and impart z = 0 and z < 1, psi(~z) => -euler!*constant when numberp z and z = 1 and symbolic !*rounded and precision(0) < 501, psi(~z) => -euler!*constant - 2 * log(2) when numberp z and z = (1/2) and symbolic !*rounded and precision(0) < 501, psi(~z) => do!*psi(z) when numberp z and impart z = 0 and symbolic !*rounded, psi(~z) => (psi(z/2) + psi((z+1)/2) + 2 * log(2)) / 2 when numberp z and impart z = 0 and (z/2) = floor (z/2) and z > 0 and not symbolic !*rounded, psi(~z) => psi(z-1) + (1 / (z-1)) when numberp z and impart z = 0 and z > 1 and not symbolic !*rounded, psi(~z) => psi(1-z) + pi*cot(pi*(1-z)) when numberp z and impart z = 0 and z < 0 and not symbolic !*rounded, df(psi(~z),z) => polygamma(1, z), int(psi(~z),z) => log gamma(~z) })$ algebraic (let psi!*rules); % PSI_SIMP.RED F.J.Wright, 2 July 1993 % The polygamma rules are addded by Y.K. Man on 9 July 1993 % Support for the psi operator. % ============================= % psi(x) = df(log Gamma(x), x) as in specfn package, etc. % The specfn package does not currently provide the required % simplifications. algebraic; % Simplify to "standard form" in which argument is allowed a numeric % shift in the range 0 <= shift < 1: psi_rules := { % Rule for integer shifts (x + 3), and non-integer shifts (x + 3/2)in % a non-integer number domain (on rational) or with "on intstr, div": psi(~x+~n) => psi(x+n-1) + 1/(x+n-1) when numberp n and n >= 1, psi(~x+~n) => psi(x+n+1) - 1/(x+n) when numberp n and n < 0, polygamma(~m,~x+~n) => polygamma(m,x+n-1)+(-1)^m*factorial(m) /(x+n-1)^(m+1) when numberp n and fixp m and n >= 1, polygamma(~m,~x+~n) => polygamma(m,x+n+1)-(-1)^(m)*factorial(m) /(x+n)^(m+1) when numberp n and fixp m and n < 0, % Rule for rational shifts (x + 3/2) in the default (integer) number % domain and rational arguments (x/y + 3): psi((~x+~n)/~d) => psi((x+n-d)/d) + d/(x+n-d) when numberp(n/d) and n/d >= 1, psi((~x+~n)/~d) => psi((x+n+d)/d) - d/(x+n) when numberp(n/d) and n/d < 0, polygamma(~m,(~x+~n)/~d) => polygamma(m,(x+n-d)/d) + (-1)^m*factorial(m)*d^(m+1)/(x+n-d)^(m+1) when fixp m and numberp(n/d) and n/d >= 1, polygamma(~m,(~x+~n)/~d) => polygamma(m,(x+n+d)/d) - (-1)^m*factorial(m)*d^(m+1)/(x+n)^(m+1) when fixp m and numberp(n/d) and n/d < 0 }; % NOTE: The rational-shift rule does not work with "on intstr, div". let psi_rules; symbolic; % % Rules for initial manipulation of polygamma functions. % symbolic (operator polygamma!*calc, trigamma!*halves, printerr, polygamma_aux); symbolic procedure printerr(x); rederr x; algebraic procedure polygamma_aux(n,m); for ii:=1:(n-1) sum (1/ii**(m+1)); algebraic (polygamma!*rules := { polygamma(~n,~x) => printerr "Index of Polygamma must be an integer >= 0" when numberp n and (not fixp n or n < -1), polygamma(~n,~x) => psi(x) when numberp n and n = 0, polygamma(~n,~x) => infinity when numberp x and impart x = 0 and x = floor x and x < 1, polygamma(~n,~x) => do!*trigamma!*halves(x) when numberp n and n = 1 and numberp x and impart x = 0 and (not (x = floor x) and ((2*x) = floor (2*x))) and x > 1, polygamma(~n,~x) => ((-1) ** (n)) * (factorial n) * (- zeta(n+1) + polygamma_aux(x,n)) when fixp x and x >= 1 and not symbolic !*rounded, polygamma(~n,~x) => ((-1)**n) * factorial n * (-2 * (2**n) * zeta(n+1) + 2 * (2**n) + zeta(n+1)) when numberp x and x = (3/2) and not symbolic !*rounded, polygamma(~n,~x) => do!*polygamma(n,x) when numberp x and symbolic !*rounded and numberp n and impart n = 0 and n = floor n, df(polygamma(~n,~x), ~x) => polygamma(n+1, x), int(polygamma(~n,~x),~x) => polygamma(n-1,x) })$ algebraic (let polygamma!*rules); % % Set up rules for the initial manipulation of zeta. % % Comments: % % Zeta of positive even numbers and negative odd numbers % is evaluated (in terms of pi) always when its argument % has magnitude less than 31, and only in rounded mode % otherwise. (This is because the coefficients get a bit % big when the argument is over about 30.) % algebraic operator zeta; symbolic (operator zeta!*calc, zeta!*pos!*intcalc); algebraic (zeta!*rules := { zeta(~x) => (- (1/2)) when numberp x and x = 0, zeta(~x) => (pi ** 2) / 6 when numberp x and x = 2, zeta(~x) => (pi ** 4) / 90 when numberp x and x = 4, zeta(~x) => infinity when numberp x and x = 1, zeta(~x) => 0 when numberp x and impart x = 0 and x < 0 and (x/2) = floor(x/2), zeta(~x) => ((2*pi)**x) / (2*factorial x)*(abs bernoulli!*calc x) when numberp x and impart x = 0 and x > 0 and (x/2) = floor (x/2) and x < 31, zeta(~x) => - (bernoulli!*calc (1-x)) / (2*x) when numberp x and impart x = 0 and x < 0 and x = floor x and x > -31, zeta(~x) => ((2*pi)**x)/(2 * factorial x)*(abs bernoulli!*calc x) when numberp x and impart x = 0 and x > 0 and (x/2) = floor(x/2) and x < 201 and symbolic !*rounded, zeta(~x) => - (bernoulli!*calc (1-x)) / (1-x) when numberp x and impart x = 0 and x < 0 and x = floor x and x > -201 and symbolic !*rounded, zeta(~x) => (2**x)*(pi**(x-1))*sin(pi*x/2)*gamma(1-x)*zeta(1-x) when numberp x and impart x = 0 and x < 0 and (x neq floor x or x < -200) and symbolic !*rounded, zeta(~x) => do!*zeta!*pos!*intcalc(fix x) when symbolic !*rounded and numberp x and impart(x) = 0 and x > 1 and x = floor x and (x <= 15 or precision 0 > 100 or 2*x < precision 0), zeta(~x) => do!*zeta(x) when numberp x and impart x = 0% and x > 1 and symbolic !*rounded, df(zeta(~x),x) => -(1/2)*log(2*pi) when numberp x and x = 0 })$ algebraic (let zeta!*rules); algebraic procedure do!*psi(z); algebraic sf!*eval('psi!*calc,{z}); algebraic procedure do!*polygamma(n,z); algebraic sf!*eval('polygamma!*calc,{n,z}); algebraic procedure do!*trigamma!*halves(z); algebraic sf!*eval('trigamma!*halves,{z}); algebraic procedure do!*zeta(z); (if z <= 1.5 and precision(0) <= floor(4+3*z) then raw!*zeta(z) else if (3*z) > (10*precision(0)) then 1.0 else if z > 100 then algebraic sf!*eval('zeta!*calc,{z}) else algebraic sf!*eval('zeta!*general!*calc,{z})); algebraic procedure do!*zeta!*pos!*intcalc(z); algebraic sf!*eval('zeta!*pos!*intcalc,{z}); % % algebraic procedure psi!*calc(z); % % Compute a value of psi. Works by first computing the % smallest positive integral x at which psi(x) is easily % computable to the current precision using no more % than the first 200 bernoulli numbers, then scaling up % the given argument (if necessary) so that it can be % computed, scaling down again afterwards. % % Does not work for complex arguments. % algebraic procedure psi!*calc(z); begin scalar result, admissable, bern300, alglist!*, precom; integer prepre, scale, lowest; precom := complex!*off!*switch(); prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd + 1); admissable := (1 / (10 ** prepre)) / 2; if prepre = psi!*ld(0) then lowest := psi!*ld(1) else << bern300 := abs bernoulli!*calc 300; lowest := 1 + symbolic conv!:bf2i exp!: (divbf(log!:(divbf(sq2bf!* bern300, timbf(i2bf!: 150, sq2bf!* admissable)), 4), i2bf!: 300), 3); % Use symbolic mode so as to % force less accuracy for more speed psi!*ld(0) := prepre; psi!*ld(1) := lowest >> ; if lowest>repart z then scale := ceiling(lowest - repart z) + 20; z := z + scale; result := algebraic symbolic psi!*calc!*sub(z, scale, admissable); precision prepre; complex!*restore!*switch(precom); return result; end; symbolic procedure psi!*calc!*sub(z, scale, admissable); begin scalar result, zsq, zsqp, this, bk; integer k, orda, rp; k := 2; z := sq2bf!* z; admissable := sq2bf!* admissable; zsq := timbf(z,z); zsqp := zsq; this := plubf(admissable, bfone!*); result := difbf (log!: (z,c!:prec!:()), divbf(bfone!*, timbf(bftwo!*, z))); orda := order!: admissable - 5; rp := c!:prec!:(); while greaterp!: (abs!: this, admissable) do << bk := sq2bf!* symbolic algebraic bernoulli!*calc k; this := divide!:(bk, timbf(i2bf!: k, zsqp), rp); result := difbf(result, this); k := k + 2; rp := order!: this - orda; zsqp := timbf(zsqp, zsq) >>; for n := 1:scale do result := difbf(result, divbf(bfone!*, difbf(z, i2bf!: n))); return mk!*sq !*f2q mkround result; end; % % algebraic procedure polygamma!*aux(n,z); % % Used by the procedure below, to implement the Reflection % Formula. This obtains an expression for % n % d % --- ( cot ( pi * x ) ) % n % dx % and substitutes z for x into it, returning the result. % algebraic procedure polygamma!*aux(n,z); begin scalar poly; clear dummy!*arg; poly := cot(pi * dummy!*arg); for k := 1:n do poly := df(poly, dummy!*arg); dummy!*arg := z; return poly; end; % % algebraic procedure polygamma!*calc(n,z); % % Computes a value of the polygamma function, order n, % at z. N must be an integer, and z must be real. If % z is negative, the Reflection Formula is applied by % a call to polygamma!*aux (above); then the positive % argument is fed to polygamma!*calc!*s which does the % real work. % algebraic procedure polygamma!*calc(n,z); begin scalar result, z0, prepre, precom; precom := complex!*off!*switch(); prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd + 3) else precision (prepre + 3 + floor(prepre/50)); if z > 0 then << z0 := z; result := algebraic symbolic polygamma!*calc!*s(n,z0) >> else << z0 := 1-z; result := ((-1)**n)*(pi*polygamma!*aux(n,z0) + algebraic symbolic polygamma!*calc!*s(n,z0)) >>; precision prepre; complex!*restore!*switch(precom); return result; end; % % symbolic procedure polygamma!*calc!*s(n,z); % % Implementation of an asymptotic series for the poly- % gamma functions. Computes a scale factor which should % (hopefully) provide a minimum argument for which this % series is valid at the given order and precision; then % computes the series for that argument and scales down % again using the Recurrence Formula. % symbolic procedure polygamma!*calc!*s(n,z); begin scalar result, this, admissable, partial, zexp, zexp1, zsq, nfac, nfac1, kfac, rescale, signer, z0; integer k, nm1, nm2, rp, orda, min, scale; z := sq2bf!* z; signer := i2bf!:((-1)**(n-1)); admissable := divide!:(bfone!*,i2bf!:(bf!*base**c!:prec!:()),8); min := 10 + conv!:bf2i exp!:(times!:(divide!:(bfone!*,i2bf!:(300+n),8), log!:(divide!:(timbf(round!:mt(i2bf!: factorial(300+n),8), abs!: sq2bf!* symbolic algebraic bernoulli 300), times!:(admissable,round!:mt(i2bf!: factorial 300,8)), 8),8)),8); % In which Chris approximates to 8 bits % and hopes to get away with it... scale := min - (1 + conv!:bf2i z); if scale < 0 then scale := 0; z0 := plubf(z,i2bf!: scale); nfac := round!:mt(i2bf!: factorial(n-1),c!:prec!:()); zexp := texpt!:any(z0,n); result := plubf(divbf(nfac,zexp), divbf((nfac1 := timbf(i2bf!: n,nfac)), timbf(bftwo!*,(zexp1 := timbf(zexp,z0))))); nfac := nfac1; zexp := zexp1; nm1 := n-1; nm2 := n-2; rp := c!:prec!:(); nfac := timbf(nfac, i2bf!: (n+1)); kfac := bftwo!*; zexp := timbf(zexp,z0); zsq := timbf(z0,z0); partial := divbf(nfac,timbf(kfac,zexp)); k := 2; orda := order!: admissable - 5; this := bfone!*; while greaterp!:(abs!: this, admissable) do << result := plubf(result, (this := timbf(sq2bf!* retrieve!*bern k,partial))); k := k + 2; partial := divide!:(timbf(partial,i2bf!:((nm2+k)*(nm1+k))), timbf(zsq,i2bf!:((k-1)*k)),rp); rp := order!: this - orda >>; result := times!:(signer,result); if scale neq 0 then << rescale := bfz!*; nfac := round!:mt(i2bf!: factorial n,c!:prec!:()); for k := 1:scale do <<rescale := plus!:(rescale,timbf(nfac,texpt!:(z,-n-1))); z := plubf(z,bfone!*) >>; result := plubf(result,times!:(signer,rescale)) >>; return mk!*sq !*f2q mkround result; end; % % algebraic procedure trigamma!*halves(x); % % Applies a formula to derive the exact value of the trigamma % function at x where x = n+(1/2) for n = 1, 2, ... % algebraic procedure trigamma!*halves(x); begin integer prepre; scalar result, alglist!*; result := (1/2) * (pi ** 2) - (4 * (for k := 1:(round (x-(1/2))) sum ((2*k - 1) ** (-2)))); return result; end; % % algebraic procedure zeta!*calc(s); % % Calculate zeta(s). Only valid for repart(s) > 1. % % This function uses the system !*primelist!* of the first % 500 primes. If the system variable disappears or changes, % this function is helpless. % algebraic procedure zeta!*calc(z); begin scalar result, admissable, primelist, partialpl, this, modify, spl, alglist!*; integer prepre, j, rflag, thisprime, nexti; share spl; prepre := precision(0); precision prepre + 3; admissable := (1 / (10 ** (prepre + 2))); symbolic (spl := !*primelist!*); primelist := {}; result := 1; modify := 1; for k := 1:10 do << j := symbolic car spl; symbolic (spl := cdr spl); primelist := (j . primelist); modify := modify * (1 - (1 / (j**z))) >>; modify := 1 / modify; this := admissable + 1; if not symbolic cdr divide (j, 3) then j := j + 2; nexti := (if not symbolic cdr divide (j+1, 3) then 2 else 4); while ((abs this) > admissable) do << rflag := 1; partialpl := primelist; while ((partialpl neq {}) and rflag) do << thisprime := first partialpl; rflag := symbolic cdr divide(j, thisprime); partialpl := rest partialpl >>; if rflag then result := result + (this := (1 / (j**z))); j := j + nexti; nexti := 6 - nexti >>; result := result * modify; precision prepre; return result; end; algebraic procedure zeta!*pos!*intcalc(m); (((-1)**m)*polygamma(m-1,3)/factorial(m-1) + 1 + (1/(2**m))); algebraic procedure zeta!*error(z,terms); (((-1) ** (terms+2)) / ((terms+1) ** z)); algebraic procedure zeta!*general!*calc(z); begin scalar result, zp, admissable, z0; integer pre, k; pre := precision(0); admissable := algebraic symbolic (mk!*sq !*f2q mkround divide!:(bfone!*,i2bf!:(10 ** pre),8)); if (z**2) < admissable then result := ((-1/2) - ((log(2*pi))*z)/2) else if pre < !!nfpd then begin scalar sstt, stt; sstt := (for k := 2:(pre-1) sum (k**(-z))); precision (!!nfpd + 2); z0 := z; zp := pre**(-z); stt := sstt + 1; result := algebraic symbolic zeta!*general!*calc!*sub(z0,zp,admissable,pre,stt); end else <<z0 := z; zp := pre**(-z); result := algebraic symbolic zeta!*general!*calc!*sub(z0,zp,admissable,pre,'())>>; precision pre; return result; end; symbolic procedure zeta!*general!*calc!*sub(z,zp,admissable,pre,stt); begin scalar result, prere, this, fac, pre, zk1, zk2, logz; integer k; z := sq2bf!* z; zp := sq2bf!* zp; admissable := sq2bf!* admissable; if stt = nil then << result := bfone!*; k := 1; this := plus!:(admissable,bfone!*); while greaterp!: (abs!: this,admissable) and k < pre-1 do << k := k + 1; this := texpt!:any(i2bf!: k, minus!: z); result := plubf(result, this) >> >> else result := sq2bf!* stt; pre := i2bf!: pre; zk1 := plubf(z,bftwo!*); zk2 := plubf(z,bfone!*); result := plubf(result, timbf(zp,plubf(bfhalf!*,divbf(pre,difbf(z,bfone!*))))); fac := divbf(bfone!*,timbf(pre,pre)); this := timbf(divbf(z,bftwo!*),divbf(zp,pre)); result := plubf(result,divbf(this,i2bf!: 6)); k := 4; prere := plubf(result,bfone!*); while greaterp!: (abs!: difbf(prere,result), admissable) do << this := divbf(timbf(this,timbf(fac,timbf(zk1,zk2))), i2bf!:(k*(k-1))); prere := result; result := plubf(result,timbf( sq2bf!* symbolic algebraic bernoulli!*calc k, this)); zk1 := plus!:(zk1,bftwo!*); zk2 := plus!:(zk2,bftwo!*); k := k + 2; >>; return mk!*sq !*f2q mkround result; end; stieltjes (0) := 0.577215664901532860606512$ % Euler's constant stieltjes (1) := -0.0728158233766$ stieltjes (2) := -0.00968992187973$ stieltjes (3) := 0.00206262773281$ stieltjes (4) := 0.00250054826029$ stieltjes (5) := 0.00427794456482$ stf (0) := 1$ stf (1) := 1$ stf (2) := 2$ stf (3) := 6$ stf (4) := 24$ stf (5) := 120$ algebraic procedure raw!*zeta(z); << z := z-1; 1/z + (for m := 0:5 sum ((-1)**m * stieltjes(m) * z**m / stf(m))) >>; endmodule; module sfbes; % Procedures and Rules for the Bessel functions. % Author: Chris Cannam, October 1992. % % Firstly, procedures to compute values of the Bessel functions by % direct bigfloat manipulation; also procedures for large arguments, % using an asymptotic formula. % These are specific to the Schoepf/Beckingham binary bigfloats, though % easily adapted, and they should only be used with n and z both % numeric, real and non-negative. % Then follow procedures written in algebraic mode and used for certain % special cases such as complex arguments. Anybody who wishes to create % symbolic mode complex-rounded versions is welcome to do so, with my % blessing. % No functions are provided to compute bessel K, though for special % cases the ruleset handles it. imports complex!*on!*switch, complex!*off!*switch, complex!*restore!*switch, sq2bf!*, sf!*eval; % This module exports no functions. I want to keep it available only % through the algebraic operators, largely because the functions are % quite a complicated lot. If you want to use it from symbolic mode, % use a wrapper and use the algebraic operators- it's slower, but at % least that way you'll get the answers. global '(logten); algebraic operator besselj, bessely, besseli, besselk, hankel1, hankel2; symbolic operator do!*j, do!*y, do!*i; algebraic (bessel!*rules := { besselj(~n,~z) => 0 when numberp z and z = 0 and numberp n and n neq 0, bessely(~n,~z) => infinity when numberp z and z = 0, besselj(~n,~z) => sqrt(2/(pi*z)) * sin(z) when numberp n and n = 1/2, bessely(~n,~z) => sqrt(2/(pi*z)) * cos(z) when numberp n and n = 1/2, % J and Y for negative values and indices. besselj(~n,~z) => ((-1)**n) * besselj(-n,z) when numberp n and impart n = 0 and n = floor n and n < 0, besselj(~n,~z) => ((-1)**n) * besselj(n,-z) when numberp n and impart n = 0 and n = floor n and numberp z and repart z < 0, bessely(~n,~z) => ((-1)**n) * bessely(-n,z) when numberp n and impart n = 0 and n = floor n and n < 0, bessely(~n,~z) => ((besselj(n,z)*cos(n*pi))-(besselj(-n,z)))/sin(n*pi) when not symbolic !*rounded and numberp n and (impart n neq 0 or not (repart n = floor repart n)), % Hankel functions. hankel1(~n,~z) => sqrt(2/(pi*z)) * (exp(i*z)/i) when symbolic !*complex and numberp n and n = 1/2, hankel2(~n,~z) => sqrt(2/(pi*z)) * (exp(-i*z)/(-i)) when symbolic !*complex and numberp n and n = 1/2, hankel1(~n,~z) => besselj(n,z) + i * bessely(n,z) when symbolic !*complex and not symbolic !*rounded, hankel2(~n,~z) => besselj(n,z) - i * bessely(n,z) when symbolic !*complex and not symbolic !*rounded, % Modified Bessel functions I and K. besseli(~n,~z) => 0 when numberp z and z = 0 and numberp n and n neq 0, besseli(~n,~z) => besseli(-n,z) when numberp n and impart n = 0 and n = floor n and n < 0, besselk(~n,~z) => besselk(-n,z) when numberp n and impart n = 0 and n < 0, besselk(~n,~z) => infinity when numberp z and z = 0, besselk(~n,~z) => (pi/2)*((besseli(-n,z) - besseli(n,z))/(sin(n*pi))) when numberp n and impart n = 0 and not (n = floor n), % Derivatives. df(besselj(~n,~z),z) => -besselj(1,z) when numberp n and n = 0, df(bessely(~n,~z),z) => -bessely(1,z) when numberp n and n = 0, df(besseli(~n,~z),z) => besseli(1,z) when numberp n and n = 0, df(besselk(~n,~z),z) => -besselk(1,z) when numberp n and n = 0, df(besselj(~n,~z),z) => besselj(n-1,z) - (n/2) * besselj(n,z), df(bessely(~n,~z),z) => bessely(n-1,z) - (n/2) * bessely(n,z), df(hankel1(~n,~z),z) => hankel1(n-1,z) - (n/2) * hankel1(n,z), df(hankel2(~n,~z),z) => hankel2(n-1,z) - (n/2) * hankel2(n,z), df(besseli(~n,~z),z) => (besseli(n-1,z) + besseli(n+1,z)) / 2, % Sending to be computed besselj(~n,~z) => do!*j(n,z) when numberp n and numberp z and symbolic !*rounded, bessely(~n,~z) => do!*y(n,z) when numberp n and numberp z and symbolic !*rounded, besseli(~n,~z) => do!*i(n,z) when numberp n and numberp z and symbolic !*rounded })$ algebraic (let bessel!*rules); algebraic procedure do!*j(n,z); (if impart n = 0 and impart z = 0 and repart z > 0 then algebraic sf!*eval('j!*calc!*s,{n,z}) else algebraic sf!*eval('j!*calc, {n,z})); algebraic procedure do!*y(n,z); (if impart n = 0 and impart z = 0 and n = floor n then if repart z < 0 then algebraic sf!*eval('y!*calc!*sc, {n,z }) else algebraic sf!*eval('y!*calc!*s, {n,z,{}}) else if impart n neq 0 or n neq floor n then y!*reexpress(n,z) else algebraic sf!*eval('y!*calc, {n,z })); % What should be the value of BesselY(0,3i)? algebraic procedure do!*i(n,z); (if impart n = 0 and impart z = 0 and repart z > 0 then algebraic sf!*eval('i!*calc!*s, {n,z}) else algebraic sf!*eval('i!*calc, {n,z})); algebraic procedure j!*calc!*s(n,z); begin scalar n0, z0, fkgamnk, result, alglist!*; integer prepre, precom; precom := complex!*off!*switch(); prepre := precision 0; if z > (2*prepre) and z > 2*n and (result := algebraic sf!*eval('asymp!*j!*calc,{n,z})) neq {} then << precision prepre; complex!*restore!*switch(precom); return result >>; if prepre < !!nfpd then precision (!!nfpd+3+floor(abs n/10)) else precision (prepre+6+floor(abs n/10)); n0 := n; z0 := z; fkgamnk := gamma(n+1); result := algebraic sf!*eval('j!*calc!*s!*sub,{n0,z0,fkgamnk,prepre}); precision prepre; complex!*restore!*switch(precom); return result; end; symbolic procedure j!*calc!*s!*sub(n,z,fkgamnk,prepre); begin scalar result, admissable, this, prev, nprev, modify, fkgamnk, zfsq, zfsqp, knk, azfsq, k; n := sq2bf!* n; z := sq2bf!* z; fkgamnk := sq2bf!* fkgamnk; modify := exp!:(timbf(log!:(divbf(z,bftwo!*), c!:prec!:()+2),n), c!:prec!:()); % modify := ((z/2)**n); zfsq := minus!:(divbf(timbf(z,z),i2bf!: 4)); % zfsq := (-(z**2)/4); azfsq := abs!: zfsq; result := divbf(bfone!*, fkgamnk); k := bfone!*; zfsqp := zfsq; fkgamnk := timbf(fkgamnk, plubf(n,bfone!*)); if lessp!:(abs!: result, bfone!*) then admissable := abs!: divbf (bfone!*, timbf (exp!:(timbf(fl2bf logten, i2bf!:(prepre + length explode fkgamnk)), 8), modify)) else admissable := abs!: divbf (bfone!*, timbf (exp!:(timbf(fl2bf logten, i2bf!:(prepre + length explode (1 + conv!:bf2i abs!: result))), 8), modify)); this := plubf(admissable, bfone!*); while greaterp!:(abs!: this, admissable) do << this := divbf(zfsqp, fkgamnk); result := plubf (result, this); k := plubf(k,bfone!*); knk := timbf (k, plubf(n, k)); if greaterp!: (azfsq, knk) then precision (precision(0) + length explode(1 + conv!:bf2i divbf (azfsq, knk))); zfsqp := timbf(zfsqp,zfsq); fkgamnk := timbf(fkgamnk,knk) >>; result := timbf(result,modify); return mk!*sq !*f2q mkround result; end; flag('(j!*calc!*s!*sub), 'opfn); algebraic procedure asymp!*j!*calc(n,z); begin scalar result, admissable, alglist!*, modify, chi, mu, p, q, n0, z0; integer prepre; prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd + 5) else precision (prepre+8); modify := sqrt(2/(pi*z)); admissable := 1 / (10 ** (prepre + 5)); chi := z - (n/2 + 1/4)*pi; mu := 4*(n**2); n0 := n; z0 := z; p := algebraic symbolic asymp!*p(n0,z0,mu,admissable); if p neq {} then << q := algebraic symbolic asymp!*q(n0,z0,mu,admissable); if q neq {} then result := modify*(first p * cos chi - first q * sin chi) else result := {} >> else result := {}; precision prepre; return result; end; algebraic procedure asymp!*y!*calc(n,z); begin scalar result, admissable, alglist!*, modify, chi, mu, p, q, n0, z0; integer prepre; prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd + 5) else precision (prepre+8); modify := sqrt(2/(pi*z)); admissable := 1 / (10 ** (prepre + 5)); chi := z - (n/2 + 1/4)*pi; mu := 4*(n**2); n0 := n; z0 := z; p := algebraic symbolic asymp!*p(n0,z0,mu,admissable); if p neq {} then << q := algebraic symbolic asymp!*q(n0,z0,mu,admissable); if q neq {} then result := modify*(first p * sin chi + first q * cos chi) else result := {} >> else result := {}; precision prepre; return result; end; symbolic procedure asymp!*p(n,z,mu,admissable); begin scalar result, this, prev, zsq, zsqp, aj2t; integer k, f; n := sq2bf!* n; z := sq2bf!* z; mu := sq2bf!* mu; admissable := sq2bf!* admissable; k := 2; f := 1 + conv!:bf2i difbf(divbf(n,bftwo!*),divbf(bfone!*,i2bf!: 4)); this := plubf(admissable, bfone!*); result := bfone!*; aj2t := asymp!*j!*2term(2, mu); zsq := timbf(i2bf!: 4, timbf(z, z)); zsqp := zsq; while greaterp!:(abs!: this, admissable) do << prev := abs!: this; this := timbf(i2bf!: ((-1)**(k/2)), divbf(aj2t, zsqp)); if greaterp!: (abs!: this, prev) and (k > f) then result := this := bfz!* else << result := plubf(result, this); zsqp := timbf(zsqp, zsq); k := k + 2; aj2t := timbf(aj2t, asymp!*j!*2term!*modifier(k, mu)) >> >>; if result = bfz!* then return '(list) else return list('list, mk!*sq !*f2q mkround result); end; symbolic procedure asymp!*q(n,z,mu,admissable); begin scalar result, this, prev, zsq, zsqp, aj2t; integer k, f; n := sq2bf!* n; z := sq2bf!* z; mu := sq2bf!* mu; admissable := sq2bf!* admissable; k := 1; f := 1 + conv!:bf2i difbf(divbf(n,bftwo!*),divbf(i2bf!: 3, i2bf!: 4)); this := plubf(admissable, bfone!*); result := bfz!*; aj2t := asymp!*j!*2term(1, mu); zsq := timbf(i2bf!: 4, timbf(z, z)); zsqp := timbf(bftwo!*, z); while greaterp!:(abs!: this, admissable) do << prev := abs!: this; this := timbf(i2bf!: ((-1)**((k-1)/2)), divbf(aj2t, zsqp)); if greaterp!: (abs!: this, prev) and (k > f) then result := this := bfz!* else << result := plubf(result, this); zsqp := timbf(zsqp, zsq); k := k + 2; aj2t := timbf(aj2t, asymp!*j!*2term!*modifier(k, mu)) >> >>; if result = bfz!* then return '(list) else return list('list, mk!*sq !*f2q mkround result); end; symbolic procedure asymp!*j!*2term(k, mu); begin scalar result; result := bfone!*; for j := 1 step 2 until (2*k - 1) do result := timbf(result, difbf(mu, i2bf!: (j**2))); result := divbf (result, i2bf!: (factorial k * (2**(2*k)))); return result; end; symbolic procedure asymp!*j!*2term!*modifier(k, mu); (timbf (difbf(mu, i2bf!: ((2*k-3)**2)), divbf (difbf(mu, i2bf!: ((2*k-1)**2)), i2bf!: ((k-1) * k * 16)))); algebraic procedure y!*calc!*s(n,z,st); begin scalar n0, z0, st0, ps, fkgamnk, result, alglist!*; integer prepre, precom; precom := complex!*off!*switch(); prepre := precision 0; if z > (2*prepre) and z > 2*n and (result := asymp!*y!*calc(n,z)) neq {} then << precision prepre; complex!*restore!*switch(precom); return result >>; if prepre < !!nfpd then precision (!!nfpd+5) else precision (prepre + 8); n0 := n; z0 := z; st0 := st; ps := psi 1 + psi(1+n); fkgamnk := gamma(n+1); result := algebraic symbolic y!*calc!*s!*sub(n0,z0,ps,fkgamnk,prepre,st0); precision prepre; complex!*restore!*switch(precom); return result; end; % The last arg to the next procedure is an algebraic list of the % modifier, start value and (factorial n) for the series. If this is % (LIST) (i.e. the nil algebraic list {}), the values will be computed % in this procedure; otherwise the values in st0 will be used. This % feature is used for decomposition of the computation of y at negative % real z. It is of course designed to make the code as hard to follow % as possible. Why else? % n must be a non-negative integer for this next procedure to work. symbolic procedure y!*calc!*s!*sub(n,z,ps,fkgamnk,prepre, st0); begin scalar start, result, this, ps, fc, modify, zfsq, zfsqp, nps, azfsq, bj, z0, n0, tpi, admissable; integer k, fk, fnk, difd, fcp; z0 := z; z := sq2bf!* z; ps := sq2bf!* ps; n := sq2bf!* n; n0 := conv!:bf2i n; tpi := pi!*(); if st0 = '(list) then << modify := divbf(exp!: (timbf(n, log!:(divbf(z, bftwo!*), c!:prec!:()+2)), c!:prec!:()), tpi); bj := retag cdr !*a2f sf!*eval('j!*calc!*s!*sub, list('list,n0,z0,fkgamnk,prepre)); if n0 < 1 then << start := timbf(timbf(divbf(bftwo!*,tpi), log!:(divbf(z,bftwo!*),c!:prec!:()+1)), bj); fc := factorial n0 >> else if (n0 < 100) then << start := bfz!*; zfsq := divbf(timbf(z,z), i2bf!: 4); for k := 0:(n0-1) do start := plubf(start, divbf (exptbf(zfsq, k, i2bf!: factorial (n0-k-1)), i2bf!: factorial k)); start := minus!: timbf(start, divbf(exp!: (timbf(minus!: n, log!:(divbf(z, bftwo!*), c!:prec!:()+2)), c!:prec!:()), tpi)); start := plubf (start, timbf(timbf(divbf(bftwo!*,tpi),bj), log!:(divbf(z,bftwo!*), c!:prec!:()+2))); fc := factorial n0 >> else << zfsq := divbf(timbf(z,z), i2bf!: 4); zfsqp := bfone!*; fk := 1; fnk := factorial (n0-1); fc := fnk * n0; start := bfz!*; for k := 0:(n0-2) do << start := plubf(start, timbf(i2bf!: fnk, divbf(zfsqp, i2bf!: fk))); fk := fk * (k+1); fnk := fnk / (n0-k-1); zfsqp := timbf(zfsqp, zfsq) >>; start := plubf(start, timbf(i2bf!: fnk, divbf(zfsqp, i2bf!: fk))); start := minus!: plubf(timbf(start, divbf(bfone!*,timbf(modify,timbf(tpi,tpi)))), timbf(timbf(divbf(bftwo!*,tpi), bj), log!:(divbf(z,bftwo!*),c!:prec!:()+2))) >> >> else << start := sq2bf!* cadr st0; modify := sq2bf!* caddr st0; fc := cadddr st0 >>; zfsq := minus!: divbf(timbf(z,z),i2bf!: 4); azfsq := abs!: zfsq; result := divbf(ps, i2bf!: fc); k := 1; zfsqp := zfsq; fc := fc * (n0+1); ps := plubf(ps,plubf(bfone!*,divbf(bfone!*,plubf(n,bfone!*)))); % Note: we are assuming numberp start. Be sure to catch other cases % elsewhere. (Notably for z < 0). This goes for bessel J as well. if lessp!: (abs!: plubf(result, start), bfone!*) then admissable := abs!: divbf(divbf(bfone!*, exp!:(timbf(fl2bf logten, plubf(i2bf!:(prepre+2), divbf(log!:(divbf(bfone!*, plubf(abs!: result, abs!: start)), 5), fl2bf logten))), 5)), modify) else admissable := abs!: divbf(divbf(bfone!*, exp!:(timbf(fl2bf logten, plubf(i2bf!:(prepre+2), divbf(log!:(plubf(abs!: result, abs!: start), 5), fl2bf logten))), 5)), modify); this := plubf(admissable, bfone!*); while greaterp!: (abs!: this, admissable) do << this := timbf(ps, divbf(zfsqp, i2bf!: fc)); result := plubf(result, this); k := k + 1; zfsqp := timbf(zfsqp, zfsq); nps := plubf(ps, plubf(divbf(bfone!*,i2bf!: k), divbf(bfone!*,i2bf!:(k+n0)))); fcp := k * (n0+k); if greaterp!:(timbf(nps,azfsq),timbf(ps,i2bf!: fcp)) then << difd := 1 + conv!:bf2i divbf(timbf(nps,azfsq),timbf(ps,i2bf!: fcp)); precision (precision(0) + length explode difd) >>; fc := fc * fcp; ps := nps >>; result := difbf(start, timbf(result, modify)); return mk!*sq !*f2q mkround result; end; algebraic procedure i!*calc!*s(n,z); begin scalar n0, z0, ps, fkgamnk, result, alglist!*; integer prepre, precom; precom := complex!*off!*switch(); prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd+3+floor(abs n/10)) else precision (prepre+8+floor(abs n/10)); n0 := n; z0 := z; fkgamnk := gamma(n+1); result := algebraic symbolic i!*calc!*s!*sub(n0,z0,fkgamnk,prepre); precision prepre; complex!*restore!*switch(precom); return result; end; symbolic procedure i!*calc!*s!*sub(n,z,fkgamnk,prepre); begin scalar result, admissable, this, prev, nprev, modify, fkgamnk, zfsq, zfsqp, knk, azfsq, k; n := sq2bf!* n; z := sq2bf!* z; fkgamnk := sq2bf!* fkgamnk; modify := exp!:(timbf(log!:(divbf(z,bftwo!*), c!:prec!:()+2),n), c!:prec!:()); % modify := ((z/2)**n); zfsq := divbf(timbf(z,z),i2bf!:(4)); % zfsq := (-(z**2)/4); azfsq := abs!: zfsq; result := divbf(bfone!*, fkgamnk); k := bfone!*; zfsqp := zfsq; fkgamnk := timbf(fkgamnk, plubf(n,bfone!*)); if lessp!:(abs!: result, bfone!*) then admissable := abs!: divbf (bfone!*, timbf (exp!:(timbf(fl2bf logten, i2bf!:(prepre + length explode fkgamnk)), 8), modify)) else admissable := abs!: divbf (bfone!*, timbf (exp!:(timbf(fl2bf logten, i2bf!:(prepre + length explode (1 + conv!:bf2i abs!: result))), 8), modify)); this := plubf(admissable, bfone!*); while greaterp!:(abs!: this, admissable) do << this := divbf(zfsqp, fkgamnk); result := plubf (result, this); k := plubf(k,bfone!*); knk := timbf (k, plubf(n, k)); if greaterp!: (azfsq, knk) then precision (precision(0) + length explode (1 + conv!:bf2i divbf (azfsq, knk))); zfsqp := timbf(zfsqp, zfsq); fkgamnk := timbf(fkgamnk, knk) >>; result := timbf(result, modify); return mk!*sq !*f2q mkround result; end; % % algebraic procedure j!*calc(n,z); % % Given integer n and arbitrary (I hope) z, compute and return % the value of the Bessel J-function, order n, at z. Current % version mostly coded for speed rather than clarity. % % Does work for non-integral n. % algebraic procedure j!*calc(n,z); begin scalar result, admissable, this, alglist!*, modify, fkgamnk, zfsq, zfsqp, azfsq, knk; % bind alglist!* to integer prepre, k, difd; % stop global alglist being cleared prepre := precision 0; % Don't need to check if asymptotic expansion is valid; % if we're using this routine, it's not appropriate anyway. % if z > (2*prepre) and z > 2*n and % (result := asymp!*j!*calc(n,z)) neq {} % then return result; precision (prepre + 4); modify := ((z/2) ** n); zfsq := (-(z**2)/4); azfsq := abs zfsq; fkgamnk := gamma(n+1); result := (1 / (fkgamnk)); k := 1; zfsqp := zfsq; fkgamnk := fkgamnk * (n+1); if numberp modify and impart modify = 0 then if (abs result) < 1 then << difd := ceiling (1/abs result); admissable := abs ((1 / (10 ** (prepre + (symbolic length explode difd)))) / modify) >> else << difd := ceiling abs result; admissable := abs ((1 / (10 ** (prepre - (symbolic length explode difd)))) / modify) >> else if (abs result) < 1 then << difd := ceiling (1/abs result); admissable := abs (1 / (10 ** (prepre + 10 + (symbolic length explode difd)))) >> else << difd := ceiling abs result; admissable := abs (1 / (10 ** (prepre + 10 - (symbolic length explode difd)))) >>; this := admissable + 1; while (abs this > admissable) do << this := (zfsqp / (fkgamnk)); result := result + this; k := k + 1; % Maintain k as term counter, knk := k * (n+k); if azfsq > knk then <<difd := ceiling (azfsq / knk); precision(precision(0)+(lisp length explode difd))>>; zfsqp := zfsqp * zfsq; % zfsqp as ((-(z**2)/4)**k), and fkgamnk := fkgamnk * knk >>; % fkgamnk as k! * gamma(n+k+1). result := result * modify; precision prepre; return result; end; % % Procedure to compute (modified) start value for % Bessel Y computations. Also used to get imaginary % part for certain values % algebraic procedure y!*modifier!*calc(n,z); begin scalar modify, start, zfsq, zfsqp, fc; integer fk, fnk, prepre; prepre := precision 0; % if prepre < !!nfpd then precision (!!nfpd + 2) % else precision (prepre + 2); modify := ((z/2)**n) / pi; % Simple expression for start value when n<1. if (n < 1) then << start := ((2/pi) * log(z/2) * besselj(n,z)); fc := factorial n >> % If n smallish, just sum using factorials. (REDUCE % seems to do smallish factorials quite quickly. In % fact it does largish factorials quite quickly as well, % but not quite as quickly as we can build them by % per-term multiplication.) else if (n < 100) then << start := - (((z/2) ** (-n)) / pi) * (for k := 0:(n-1) sum ((factorial (n-k-1) * (((z**2)/4) ** k)) / (factorial k))) + ((2/pi)*log(z/2)*besselj(n,z)); fc := factorial n >> % If n largish, avoid computing factorials, and try % to do the minimum possible real work. else << zfsq := (z**2)/4; zfsqp := 1; fk := 1; fnk := factorial (n-1); fc := fnk * n; start := 0; for k := 0:(n-2) do << start := start + (fnk * zfsqp / fk); fk := fk * (k+1); fnk := floor(fnk/(n-k-1)); zfsqp := zfsqp * zfsq >>; start := start + (fnk * zfsqp / fk); start := - ((1/(modify*(pi**2)))*start)+ ((2/pi)*log(z/2)*besselj(n,z)) >>; precision prepre; return {start, modify, fc}; end; % % algebraic procedure y!*calc(n,z); % % Given integer n and arbitrary (I hope) z, compute and return % the value of the Bessel Y-function, order n, at z. Current % version mostly coded for speed rather than clarity. % % Owing to its dependence upon factorials, doesn't work for % non-integral n. (But in any case it'd be very slow, particularly % for large non-integral n.) % algebraic procedure y!*calc(n,z); begin scalar start, result, this, ps, fc, smf, modify, zfsq, zfsqp, alglist!*, nps, azfsq; integer prepre, k, fk, fnk, difd, fcp; prepre := precision(0); precision (prepre + 8); smf := y!*modifier!*calc (n,z); start := first smf; modify := second smf; fc := third smf; % Now we have the starting value: prepare the loop for % the remaining terms. k will be our loop counter. p1 % will hold psi(k+1), and p2 psi(k+n+1); zfsqp is % maintained at ((-(z**2)/4)**k); fc is k! * (n+k)!. % The sum is of (p1 + p2) * zfsqp / fc, and we % precompute the first term in order to get an idea % of the general magnitude (it's a decreasing series). ps := psi 1 + psi(1+n); zfsq := (-(z**2)/4); azfsq := abs zfsq; result := ps / fc; k := 1; zfsqp := zfsq; fc := fc * (n+1); ps := ps + 1 + (1/(n+1)); % Having the first term and start, we check whether % they're small or large and modify the maximum % acceptable error accordingly. if numberp start then if (abs (result + start)) < 1 then admissable := abs ((1 / (10 ** (prepre+2 + log10(1/(abs result + abs start)))))/modify) else admissable := abs ((1 / (10 ** (prepre + 2))) * (log10(abs result + abs start)) / modify) else admissable := abs (1 / (10 ** (prepre + 10))); this := admissable + 1; % Now sum the series. while ((abs this) > admissable) do << this := ps * (zfsqp / fc); result := result + this; k := k + 1; zfsqp := zfsqp * zfsq; nps := ps + (1/k) + (1/(k+n)); fcp := k * (n+k); if (nps*azfsq) > (ps*fcp) then <<difd := ceiling ((nps*azfsq)/(ps*fcp)); precision(precision(0) + (lisp length explode difd))>>; fc := fc * fcp; % fc ends up as k! * (n+k)! ps := nps >>; % Amalgamate the start value and modification, and % return the answer. result := start - (result * modify); precision prepre; return result; end; % % algebraic procedure i!*calc(n,z); % % Given integer n and arbitrary (I hope) z, compute and return % the value of the (modified) Bessel I-function, order n, at z. % Current version mostly coded for speed rather than clarity. % % Does work for non-integral n. % algebraic procedure i!*calc(n,z); begin scalar result, admissable, this, prev, nprev, alglist!*, modify, fkgamnk, zfsq, zfsqp, knk; % bind alglist!* to prevent integer prepre, k, difd; % global alglist being cleared modify := ((z/2) ** n); prepre := precision 0; precision (prepre + 4); zfsq := (z**2)/4; azfsq := abs zfsq; fkgamnk := gamma(n+1); result := (1 / (fkgamnk)); k := 1; zfsqp := zfsq; fkgamnk := fkgamnk * (n+1); if numberp modify then if (abs result) < 1 then << difd := ceiling (1/abs result); admissable := abs ((1 / (10 ** (prepre + (symbolic length explode difd)))) / modify) >> else << difd := ceiling abs result; admissable := abs ((1 / (10 ** (prepre - (symbolic length explode difd)))) / modify) >> else if (abs result) < 1 then << difd := ceiling (1/abs result); admissable := abs (1 / (10 ** (prepre + 10 + (symbolic length explode difd)))) >> else << difd := ceiling abs result; admissable := abs (1 / (10 ** (prepre + 10 - (symbolic length explode difd)))) >>; this := admissable + 1; nprev := abs this; while (abs this > admissable) do << this := (zfsqp / (fkgamnk)); result := result + this; k := k + 1; % Maintain k as term counter, knk := k * (n+k); if azfsq > knk then <<difd := ceiling (azfsq / knk); precision(precision(0) + (lisp length explode difd))>>; zfsqp := zfsqp * zfsq; % zfsqp as ((-(z**2)/4)**k), and fkgamnk := fkgamnk * knk >>; % fkgamnk as k! * gamma(n+k+1). result := result * modify; precision prepre; return result; end; algebraic procedure k!*calc!*2(n,z); begin scalar result, precom; integer prepre; prepre := precision 0; precision (prepre + 8); precom := complex!*on!*switch(); result := (pi/2)*i*exp((pi/2)*n*i)*hankel1(n,z*exp((pi/2)*i)); complex!*restore!*switch(precom); precision prepre; return result; end; % % Function which simply rewrites bessely (with nonintegral % order) in terms of besselj. Turns off rounded mode to % do so, because if rounded is on, cos(n*pi) =/= 0 for % n*2 = floor (n*2), which can lead to some spectacular % inaccuracies. % algebraic procedure y!*reexpress(n,z); begin scalar result, premsg; premsg := lisp !*msg; off msg; off rounded; result := ((besselj(n,z)*cos(n*pi))-(besselj(-n,z)))/sin(n*pi); on rounded; if premsg then on msg; return result; end; % % Function to make an evil blend of the symbolic and % algebraic mode bessel-y functions where the order % is real and the arg is real and negative. Here the % result will be complex (probably), but most of the % computations involved will be with real numbers so % the symbolic mode version will do them better. % % Therefore this routine, which gets the modifier % and initial terms (the only complex bits) from the % algebraic procedure and then gets the rest from the % symbolic one. % algebraic procedure y!*calc!*sc(n,z); begin scalar st, ic, rc, md, fc, result, precom, prepre; prepre := precision 0; z := -z; if prepre < !!nfpd then precision (!!nfpd + 2) else precision (prepre + 4); st := y!*modifier!*calc(n,z); rc := - first st; precom := complex!*on!*switch(); ic := impart(log(-pi/2)); complex!*restore!*switch(precom); ic := ic*(2/pi)*besselj(n,-z); md := - second st; fc := third st; precision prepre; precom := complex!*off!*switch(); result := y!*calc!*s(n,z,{rc,md,fc}); complex!*restore!*switch(precom); if symbolic !*complex then result := result + i * ic else result := (if ic < 0 then 1 else -1) * sqrt(-(ic**2)) + result; return result; end; endmodule; module sfkummer; % Functions and rules for the Kummer M and U functions. % Author: Chris Cannam, Sept/Oct 1992. imports complex!*on!*switch, complex!*off!*switch, complex!*restore!*switch, sq2bf!*; exports kummerm!*calc; % Provides algebraic things for both functions, and numeric for (only) % the M function. The amount of non-working code for the U function I % had to cut out of this before getting this version was a sight to % behold. algebraic (operator kummerm, kummeru); symbolic operator kummerm!*calc; algebraic (kummer!*rules := { kummeru(~a,~b,~z) => ( pi / sin (pi * b)) * ( (kummerm(a,b,z) / (gamma(1+a-b) * gamma(b))) - ((z**(1-b)) * (kummerm(1+a-b,2-b,z)/(gamma(a) * gamma(2-b))))) when numberp b and (impart b neq 0 or b neq floor b) and numberp a and (impart a neq 0 or a neq floor a or a > 0) and ((a-b) neq floor repart (a-b) or (a-b) > -1), kummeru(~a,~b,~z) => ( pi / sin (pi * b)) * ( -((z**(1-b)) * (kummerm(1+a-b,2-b,z)/(gamma(a) * gamma(2-b))))) when numberp b and (impart b neq 0 or b neq floor b) and numberp a and (impart a neq 0 or a neq floor a or a > 0), kummerm(~a,~b,~z) => exp z when a = b, kummerm(~a,~b,~z) => ((2 * exp (z/2)) / z) * sinh (z/2) when numberp a and numberp b and numberp z and a = 1 and b = 2 and impart z = 0 and z neq 0, kummerm(~a,~b,~z) => ((-2 * i * exp (z/2)) / z) * sin (-z / (2*i)) when numberp a and numberp b and numberp z and a = 1 and b = 2 and repart z = 0 and z neq 0, kummerm(~a,~b,~z) => infinity when numberp a and numberp b and impart b = 0 and b < 0 and b = floor b and not (impart a = 0 and a < 0 and a = floor a and a >= b), kummerm(~a,~b,~z) => do!*kummerm(a,b,z) when symbolic !*rounded and numberp a and numberp b and numberp z and b neq 0 and impart a = 0 and impart b = 0 and impart z = 0 and not (repart b = floor repart b and repart a = floor repart a and repart a < 0 and repart b < 0 and repart a >= repart b), df(kummerm(~a,~b,~z),z) => (a/b) * kummerm(a+1, b+1, z), df(kummeru(~a,~b,~z),z) => -a * kummeru(a+1,b+1,z) })$ algebraic (let kummer!*rules); algebraic procedure do!*kummerm(a,b,z); algebraic sf!*eval('kummerm!*calc, {a,b,z}); algebraic procedure kummerm!*calc(a,b,z); begin scalar a0, b0, z0, result, alglist!*; integer prepre, precom; precom := complex!*off!*switch(); prepre := precision 0; if prepre < !!nfpd then precision (!!nfpd + 1) else precision (prepre + 2); a0 := a; b0 := b; z0 := z; result := algebraic symbolic kummerm!*calc!*sub(a0,b0,z0); complex!*restore!*switch(precom); precision prepre; return result; end; symbolic procedure kummerm!*calc!*sub(a,b,z); begin scalar result, this, admissable, pamod, pbmod; integer rp, orda, k; a := sq2bf!* a; b := sq2bf!* b; z := sq2bf!* z; result := bfone!*; k := 1; pamod := timbf(a,z); pbmod := b; admissable := divbf(bfone!*, i2bf!: (bf!*base**(5 + c!:prec!:()))); orda := order!: admissable - 5; this := bfone!*; rp := c!:prec!:(); while greaterp!: (abs!: this, admissable) do << this := divide!:(times!:(this,pamod), times!:(pbmod, i2bf!: k),rp); rp := order!: this - orda; result := plus!:(result, this); k := k + 1; pamod := plus!:(pamod, z); pbmod := plus!:(pbmod, bfone!*); >>; return mk!*sq !*f2q mkround result; end; endmodule; module sfother; % Rulesets for the Struve H and L functions, Lommel % 1 and 2 functions and Whittaker M and W functions. % Author: Chris Cannam, Nov 1992. % The aim is to re-express in terms % of other (more `standard') special % functions. No numerical approximation code. % Neither imports nor exports functions. % This module contains only rulesets. algebraic (operator struveh, struvel); algebraic (struve!*rules := { df(struveh(~n,~z),z) => (2/pi) - struveh(1,z) when numberp n and n = 0, df((z**n)*struveh(~n,~z),z) => (z**n)*struveh(n-1,z), df((z**(-n))*struveh(~n,~z),z) => (1/(sqrt(pi)*(2**n)*gamma(n+(3/2)))) - (z**(-n))*struveh(n+1,z), struveh(~n,~z) => ((-1)**n)*besselj(-n,z) when numberp n and impart n = 0 and n < 0 and (n*2)=floor(n*2) and not evenp floor(n*2), struveh(~n,~z) => ((2/(pi*z))**(1/2))*(1-cos z) when numberp n and n=1/2, struveh(~n,~z) => ((z/(pi*2))**(1/2)) * (1+(2/(z**2))) - ((2/(pi*z))**(1/2)) * (sin z + ((cos z)/z)) when numberp n and n=3/2, struvel(~n,~z) => besseli(-n,z) when numberp n and impart n = 0 and n < 0 and (n*2)=floor(n*2) and not evenp floor(n*2), struvel(~n,~z) => -i*(e**((-i*n*pi)/2))*struveh(n,i*z) when symbolic !*complex })$ algebraic (let struve!*rules); algebraic (operator lommel1, lommel2); algebraic (lommel!*rules := { lommel1(~a,~b,~z) => -(2**a)*besselj(a,z)*gamma(a+1)+z**a when numberp a and numberp b and a = b+1, lommel1(~a,~b,~z) => lommel1(a,-b,z) when numberp b and b < 0 and a neq b and a neq (b+1), lommel1(~a,~b,~z) => (sqrt(pi)*(2**a)*gamma((2*a + 1)/2)*struveh(a,z))/2 when a = b, lommel2(~a,~b,~z) => z**b when numberp a and numberp b and a = b+1, lommel2(~a,~b,~z) => lommel2(a,-b,z) when numberp b and b < 0 and a neq b and a neq (b+1), lommel2(~a,~b,~z) => (sqrt(pi)*(2**a)*gamma((2*a + 1)/2)*(-bessely(a,z)+struveh(a,z)))/2 when a = b })$ algebraic (let lommel!*rules); algebraic (operator whittakerm, whittakerw); algebraic (whittaker!*rules := { whittakerm(~k,~m,~z) => exp(-z/2)*(z**(1/2+m))*kummerm(1/2+m-k,1+2*m,z), whittakerw(~k,~m,~z) => exp(-z/2)*(z**(1/2+m))*kummeru(1/2+m-k,1+2*m,z) })$ algebraic (let whittaker!*rules); endmodule; module dilog; % Dilogarithm Integral % Collected (most items) from Abramowitz-Stegun (27.8.7) % by Winfried Neun , ZIB Berlin algebraic << operator fps; operator defint; let { fps(dilog ~x,~x) => infsum((-1)^k*(x-1)^k/k^2,k,1,infinity)}; let { df(dilog(~x),~x) => - log(x)/(x-1)}; let { defint(log(~tt)/(~tt-1),~tt,1,~x) => -dilog x }; let { defint(log(~tt)/(1-~tt),~tt,1,~x) => dilog x }; let { dilog(exp(-~t)) => - dilog(exp t) - t^2/2, dilog(-~x+1) => - dilog(x) -log x * log (1-x) + pi^2/6 when numberp x and geq(x,0) and geq(1,x), dilog(1/~x) => - dilog(x) -(log x)^2/2 when numberp x and geq(x,0) and geq(1,x), dilog(~x + 1) => dilog(x) - log x * log (x +1)-pi^2/12-(dilog x)^2/2 when numberp x and geq(x,0) and geq(2,x), dilog(~x) => compute_dilog(x) when numberp x and lisp !*rounded and x>=0, dilog 2 => -pi^2/12, dilog 1 => 0, dilog 0 => pi^2/6}; procedure compute_dilog(x); if x = 0.0 then pi^2/6 else if x = 1.0 then 0 else if x = 2.0 then -pi^2/12 else if (x >= 1.9 and x < 2.0) then compute_dilog(1-(x-1)^2)/2 - compute_dilog(1-(x-1)) else if (x > 1.9 or x < -1.0) then -(log x)^2/2 -compute_dilog(1/x) else if (x < 0.5 and x > 0.0) then -log(1-x)*log(x) + pi^2/6 - compute_dilog(1-x) else if (x > 0.5 and x < 1.0 ) then -(log x)^2/2 -compute_dilog(1/x) else begin scalar !*uncached,yy,summa,ii,term,altern ,xm1,xm1!^ii; !*uncached :=t; yy := 10^-(lisp !:prec!:); summa := 0; xm1 := x-1.0; xm1!^ii := xm1; ii :=1; altern := -1; while abs(term :=(altern * xm1!^ii/(ii*ii))) > yy do << summa := summa + term; ii:=ii+1 ; altern := -1 * altern; xm1!^ii := xm1!^ii *xm1>>; return summa; end; >>; endmodule; module sfbinom; % Procedures for computing Binomial coefficients % Stirling numbers and such % % Author: Winfried Neun, Feb 1993, Sep 1993 algebraic operator binomial; algebraic << let { binomial (~n,~k) => factorial n / (factorial k * factorial (n-k)) when fixp n and fixp k and n >= k and k >= 0, binomial (~n,~k) => gamma(n+1) / gamma (k+1) / gamma(n-k+1) } >>; % Some rules for quotients of binomials are still missing algebraic operator stirling1, stirling2; algebraic let {stirling1(~n,~n) => 1, stirling1(~n,0) => 0 when not n=0, stirling1(~n,~n-1) => - binomial(n,2), stirling1(~n,~m) => 0 when fixp n and fixp m and n < m, stirling1(~n,~m) => (for k:=0:(n-m) sum ( (-1)^k * binomial(n-1+k,n-m+k) * binomial(2*n-m,n-m-k) * stirling2(n-m+k,k))) when fixp n and fixp m and n > m, % This rather naive implementation will cause problem % when m - n is large ! stirling2(~n,~n) => 1, stirling2(~n,0) => 0 when not n=0, stirling2(~n,~n-1) => binomial(n,2), stirling2(~n,~m) => 0 when fixp n and fixp m and n < m, stirling2(~n,~m) => calc_stirling2(n,m) when fixp n and fixp m and n >m }; algebraic procedure calc_stirling2 (n,m); begin scalar bin_row; bin_row := binomial_row(m); return ((for k:=0:m sum ( (-1)^(m-k) * part(bin_row,k+1)*k^n))/factorial(m)); end; symbolic procedure binomial_row (n); % computes nth row of the Pascal triangle begin scalar list_of_bincoeff, newlist, old, curr; if (not fixp n) or (n < 0) then return nil; list_of_bincoeff := { 1 }; while n > 0 do << old := 0; newlist := {}; while not list_of_bincoeff = {} do << curr := first list_of_bincoeff; newlist := (old + curr) . newlist; old := curr; list_of_bincoeff := rest list_of_bincoeff; >>; list_of_bincoeff := 1 . newlist; n := n -1 >>; return 'list . list_of_bincoeff; end; flag('(binomial_row),'opfn); endmodule; module sfpolys; % Assorted Polynomials % will be a package of its own one day % % Author: Winfried Neun, Feb 1993 % Bernoulli Polynomials (see e.g. Abramowitz Stegun , chapter 23 algebraic operator bernoullip; algebraic << let { bernoullip (~n,0) => bernoulli n when fixp n and n >=0, bernoullip (~n,~x) => (for k:=0:n sum (binomial(n,k) * bernoulli(k) * x^(n-k))) when fixp n and n >=0} >>; % Euler Polynomials (see e.g. Abramowitz Stegun , chapter 23 algebraic operator eulerp ; algebraic << let { eulerp (~n,1/2) => euler(n)/2^n when fixp n and n >=0, eulerp (~n,~x) => (for k:=0:n sum (binomial(n,k) * euler(k)/2^k * (x -1/2)^(n-k))) when fixp n and n >=0} >>; % Univariate orthogonal bases (for approximation etc). % Author: H. Melenk, ZIB, Berlin % Copyright (c): ZIB Berlin 1993, all rights resrved algebraic procedure monomial_base(x,n); for i:=0:n collect x**i; algebraic procedure trigonometric_base(x,n); 1 . for i:=1:n join list(sin(i*x),cos(i*x)); algebraic procedure bernstein_base(x,n); for i:=0:n collect binomial(n,i)*(1-x)**(n-i)*x**i; algebraic procedure legendre_base(x,n,a,b); legendre_base1(x,n,{a/2-b/2 + (1+a/2+b/2)*x,1},1,a,b); algebraic procedure legendre_base1(x,n,base,r,a,b); if r>=n then reverse base else legendre_base1(x,n, (((2*r+a+b+1)*(a**2-b**2)+(2*r+a+b)*(2*r+1+a+b)*(2*r+2+a+b)*x)/ (2*(r+1)*(r+1+a+b)*(2*r+a+b))*first base - 2*(r+a)*(r+b)*(2r+2+a+b)/(2*(r+1)*(r+1+a+b)* (2*r+a+b))*second base) . base, r+1,a,b); algebraic procedure laguerre_base(x,n,a); laguerre_base1(x,n,{1-x+a,1},1,a); algebraic procedure laguerre_base1(x,n,base,r,a); if r>=n then reverse base else laguerre_base1(x,n, ((1+2r-x+a)/(r+1)*first base - (r+a)/(r+1)*second base ) . base, r+1,a); algebraic procedure hermite_base(x,n); hermite_base1(x,n,{2*x,1},1); algebraic procedure hermite_base1(x,n,base,r); if r>=n then reverse base else hermite_base1(x,n, (2x*first base - 2r*second base) . base, r+1); algebraic procedure chebyshev_base_t(x,n); chebyshev_base_t1(x,n,{x,1},1); algebraic procedure chebyshev_base_t1(x,n,base,r); if r>=n then reverse base else chebyshev_base_t1(x,n, (2x*first base - second base ) . base, r+1); algebraic procedure chebyshev_base_u(x,n); chebyshev_base_t1(x,n,{2x,1},1); algebraic procedure gegenbauer_base1(x,n,base,r,a); if r>=n then reverse base else gegenbauer_base1(x,n, (2*(r+a)/(r+1)*x*first base - (r+2*a-1)/(r + 1)*second base ) . base, r+1,a); algebraic procedure gegenbauer_base(x,n,a); gegenbauer_base1(x,n,{2*a*x,1},1,a); algebraic << operator hermitep,jacobip,legendrep, laguerrep,chebyshevt,chebyshevu,gegenbauerp; let {hermitep (~n,~x)=> sub(z = x,first reverse hermite_base (z,n)) when fixp n and n > 0}; let{ legendrep (~n,~x) => sub(z = x, first reverse legendre_base (z,n,0,0)) when fixp n and n > 0, legendrep (~n,~m,~x) => (-1)^m *(1-x^2)^(m/2)* df(legendrep (n,x),x,m) when fixp n and n > 0 and fixp m and m > 0, jacobip (~n,~a,~b,~x) => sub(z = x ,first reverse legendre_base (z,n,a,b)) when fixp n and n > 0}; let{ laguerrep(~n,~x) => sub(z = x,first reverse laguerre_base(z,n,0)) when fixp n and n > 0, laguerrep(~n,~a,~x) => sub(z = x, first reverse laguerre_base(z,n,a)) when fixp n and n > 0}; let {chebyshevt (~n,~x) => sub(z = x, first reverse chebyshev_base_t(z,n)) when fixp n and n > 0}; let {chebyshevu (~n,~x) => sub(z = x, first reverse chebyshev_base_u(z,n)) when fixp n and n > 0}; let {gegenbauerp (~n,~a,~x) => sub(z = x, first reverse gegenbauer_base(z,n,a)) when fixp n and n > 0}; >>; endmodule; module sfsums; % Calculation of infinite sums of reciprocal % Powers, see e.g. Abramowitz/Stegun ch 23. % % Author: Winfried Neun, Sep 1993 algebraic << let{ sum((-1)^~k /(2*(~k)-1)^~n,~k,1,infinity) => pi^n*abs(euler(n-1))/(factorial(n-1) * 2^(n+1)) when fixp n and n > 0 and not evenp n, sum((-1)^~k /(2*(~k)-1)^2,~k,1,infinity) => catalan, sum(1/(2*(~k)-1)^~n,~k,1,infinity) => zeta(n) *(1-2^(-n)) when fixp n and n > 0 and evenp n, sum(1/~k^~n,~k,1,infinity) => zeta(n) when fixp n and n > 0 and evenp n, sum((-1)^~k/~k^~n,~k,1,infinity) => zeta(n)* (1-2^(1-n)) when fixp n and n > 0 and evenp n } >>; endmodule; module sfint; % Assorted Integral Functions, Ei, Si, Ci etc. % Includes rules and limited rounded mode evaluation % for Ei, Si, si (called s_i here!), Ci, Chi, Shi, % Fresnel_S, Fresnel_C and Erf; % the numerical part to be improved! % % Author: Winfried Neun, Jun 1993 % email : neun@sc.ZIB-Berlin.de % For Math References, see e.g. Abramowitz/Stegun, chapter 5 and 7 % Exponential Integral etc. algebraic operator ei, fresnel_c, fresnel_s, erfc; algebraic operator ci, si, s_i, shi, chi; algebraic let limit(si(~tt),~tt,infinity) => pi/2; algebraic let { defint(sin(~tt)/~tt,~tt,0,~z) => si (z), si(-~x) => (- si(x)), df(si(~x),~x) => sin(x)/x , si(~x) => compute_int_functions(x,si) when numberp x and lisp !*rounded }; algebraic let { defint(sin(~tt)/~tt,~tt,~z,infinity) => - s_i (z), limit(s_i(~tt),x,infinity) => 0, s_i(~x) => si(x) - pi/2, df(s_i(~x),~x) => sin(x)/x }; algebraic let { defint(exp(~tt)/~tt,~tt,-infinity,~z) => ei (z), df(ei(~x),~x) => exp(x)/x, ei(~x) => compute_int_functions(x,ei) when numberp x and abs(x) <= 20 and lisp !*rounded }; algebraic let { defint(cos(~tt)/~tt,~tt,~z,infinity) => - ci (z), defint((cos(~tt) -1)/~tt,~tt,0,~z) => ci (z) + psi(1) -log(z), % psi(1) may be replaced by euler_gamma one day ... ci(-~x) => - ci(x) -i*pi, df(ci(~x),~x) => cos(x)/x, ci(~x) => compute_int_functions(x,ci) when numberp x and abs(x) <= 20 and lisp !*rounded }; algebraic let { defint(sinh(~tt)/~tt,~tt,0,~z) => shi (z), df(shi(~x),~x) => sinh(x)/x , shi(~x) => compute_int_functions(x,shi) when numberp x and abs(x) <= 20 and lisp !*rounded }; algebraic let { defint((cosh(~tt) -1)/~tt,~tt,0,~z) => chi (z) + psi(1) -log(z), % psi(1) may be replaced by euler_gamma one day ... df(chi(~x),~x) => cosh(x)/x , chi(~x) => compute_int_functions(x,chi) when numberp x and abs(x) <= 20 and lisp !*rounded }; algebraic let { defint(sin(pi/2*~tt^2),~tt,0,~z) => fresnel_s (z), fresnel_s(-~x) => (- fresnel_s (x)), fresnel_s(i* ~x) => (-i*fresnel_s (x)), limit(fresnel_s(~tt),~tt,infinity) => 1/2, df(fresnel_s(~x),~x) => sin(pi/2*x^x) , fresnel_s (~x) => compute_int_functions(x,fresnel_s) when numberp x and abs(x) <= 10 and lisp !*rounded }; algebraic let { defint(cos(pi/2*~tt^2),~tt,0,~z) => fresnel_c (z), fresnel_c(-~x) => (- fresnel_c (x)), fresnel_c(i* ~x) => (i*fresnel_c (x)), limit(fresnel_c(~tt),~tt,infinity) => 1/2, df(fresnel_c(~x),~x) => cos(pi/2*x^x) , fresnel_c (~x) => compute_int_functions(x,fresnel_c) when numberp x and abs(x) <= 10 and lisp !*rounded }; algebraic let { limit (erf(~x),~x,infinity) => 1, limit (erfc(~x),~x,infinity) => 0, erfc (~x) => 1-erf(x), defint(1/e^(~tt^2),~tt,0,~z) => erf(z)/2*sqrt(pi), defint(1/e^(~tt^2),~tt,~z,infinity) => erfc(z)/2*sqrt(pi), erf (~x) => compute_int_functions(x,erf) when numberp x and abs(x)<3 and lisp !*rounded }; algebraic procedure compute_int_functions(x,f); begin scalar pre,!*uncached,scale, term, n, precis, result,interm; pre := precision 0; precision pre; precis := 10^(-2 * pre); lisp setq (!*uncached,t); if f = si then if x < 0 then - compute_int_functions(-x,f) else << n:=1; term := x; result := x; while abs(term) > precis do << term := -1 * (term * x*x)/(2n * (2n+1)); result := result + term/(2n+1); n := n + 1>>; >> else if f = ci then if x < 0 then - compute_int_functions(-x,f) -i*pi else << n:=1; term := 1; result := euler!*constant + log(x); while abs(term) > precis do << term := -1 * (term * x*x)/((2n-1) * 2n); result := result + term/(2n); n := n + 1>>; >> else if f = ei then << n:=1; term := 1; result := euler!*constant + log(x); while abs(term) > precis do << term := (term * x)/n; result := result + term/n; n := n + 1>>; >> else if f = shi then << n:=1; term := x; result := x; while abs(term) > precis do << term := (term * x*x)/(2n * (2n+1)); result := result + term/(2n+1); n := n + 1>>; >> else if f = chi then << n:=1; term := 1; result := euler!*constant + log(x); while abs(term) > precis do << term := (term * x*x)/((2n-1) * 2n); result := result + term/(2n); n := n + 1>>; >> else if f = erf then if x < 0 then - compute_int_functions(-x,f) else << n:=1; term := x; result := x; while abs(term) > precis do << term := -1 * (term * x*x)/n; result := result + term/(2n+1); n := n + 1>>; result := result*2/sqrt(pi) ;>> else if f = fresnel_s then << if x > 4.0 then precision max(pre,40); if x > 6.0 then precision max(pre,80); n:=1; term := x^3*pi/2; result := term/3; interm := x^4*(pi/2)^2; while abs(term) > precis do << term := -1 * (term * interm)/(2n * (2n+1)); result := result + term/(4n+3); n := n + 1>>; >> else if f = fresnel_c then << if x > 4.0 then precision max(pre,40); if x > 6.0 then precision max(pre,80); n:=1; term := x; result := x; interm := x^4*(pi/2)^2; while abs(term) > precis do << term := -1 * (term * interm)/(2n * (2n-1)); result := result + term/(4n+1); n := n + 1>>; >>; precision pre; return result; end; endmodule; end;