Artifact 1961876389462cae0a93e38e156a887fd20c15870bbb7b9d028fa577f210d0be:
- Executable file
r37/doc/manual2/normform.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7550) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/normform.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 7550) [annotate] [blame] [check-ins using]
\chapter[NORMFORM: matrix normal forms]% {NORMFORM: Computation of matrix normal forms} \label{NORMFORM} \typeout{{NORMFORM: Computation of matrix normal forms}} {\footnotesize \begin{center} Matt Rebbeck \\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] \end{center} } \ttindex{NORMFORM} This package contains routines for computing the following normal forms of matrices: \begin{itemize} \item smithex\_int \item smithex \item frobenius \item ratjordan \item jordansymbolic \item jordan. \end{itemize} By default all calculations are carried out in ${\cal Q}$ (the rational numbers). For {\tt smithex}, {\tt frobenius}, {\tt ratjordan}, {\tt jordansymbolic}, and {\tt jordan}, this field can be extended to an algebraic number field using ARNUM (chapter~\ref{ARNUM}). The {\tt frobenius}, {\tt ratjordan}, and {\tt jordansymbolic} normal forms can also be computed in a modular base. \section{Smithex} \ttindex{smithex} {\tt Smithex}(${\cal A},\, x$) computes the Smith normal form ${\cal S}$ of the matrix ${\cal A}$. It returns \{${\cal S}, {\cal P}, {\cal P}^{-1}$\} where ${\cal S}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P S P}^{-1} = {\cal A}$. ${\cal A}$ is a rectangular matrix of univariate polynomials in $x$ where $x$ is the variable name. {\tt load\_package normform;} \begin{displaymath} {\cal A} = \left( \begin{array}{cc} x & x+1 \\ 0 & 3*x^2 \end{array} \right) \end{displaymath} \begin{displaymath} \hspace{-0.5in} \begin{array}{ccc} {\tt smithex}({\cal A},\, x) & = & \left\{ \left( \begin{array}{cc} 1 & 0 \\ 0 & x^3 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 3*x^2 & 1 \end{array} \right), \left( \begin{array}{cc} x & x+1 \\ -3 & -3 \end{array} \right) \right\} \end{array} \end{displaymath} \section{Smithex\_int} \ttindex{smithex\_int} Given an $n$ by $m$ rectangular matrix ${\cal A}$ that contains {\it only} integer entries, {\tt smithex\_int}(${\cal A}$) computes the Smith normal form ${\cal S}$ of ${\cal A}$. It returns \{${\cal S}, {\cal P}, {\cal P}^{-1}$\} where ${\cal S}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P S P}^{-1} = {\cal A}$. {\tt load\_package normform;} \begin{displaymath} {\cal A} = \left( \begin{array}{ccc} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{array} \right) \end{displaymath} {\tt smithex\_int}(${\cal A}$) = \begin{center} \begin{displaymath} \left\{ \left( \begin{array}{ccc} 3 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 60 \end{array} \right), \left( \begin{array}{ccc} -17 & -5 & -4 \\ 64 & 19 & 15 \\ -50 & -15 & -12 \end{array} \right), \left( \begin{array}{ccc} 1 & -24 & 30 \\ -1 & 25 & -30 \\ 0 & -1 & 1 \end{array} \right) \right\} \end{displaymath} \end{center} \section{Frobenius} \ttindex{frobenius} {\tt Frobenius}(${\cal A}$) computes the Frobenius normal form ${\cal F}$ of the matrix ${\cal A}$. It returns \{${\cal F}, {\cal P}, {\cal P}^{-1}$\} where ${\cal F}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P F P}^{-1} = {\cal A}$. ${\cal A}$ is a square matrix. {\tt load\_package normform;} \begin{displaymath} {\cal A} = \left( \begin{array}{cc} \frac{-x^2+y^2+y}{y} & \frac{-x^2+x+y^2-y}{y} \\ \frac{-x^2-x+y^2+y}{y} & \frac{-x^2+x+y^2-y} {y} \end{array} \right) \end{displaymath} {\tt frobenius}(${\cal A}$) = \begin{center} \begin{displaymath} \left\{ \left( \begin{array}{cc} 0 & \frac{x*(x^2-x-y^2+y)}{y} \\ 1 & \frac{-2*x^2+x+2*y^2}{y} \end{array} \right), \left( \begin{array}{cc} 1 & \frac{-x^2+y^2+y}{y} \\ 0 & \frac{-x^2-x+y^2+y}{y} \end{array} \right), \left( \begin{array}{cc} 1 & \frac{-x^2+y^2+y}{x^2+x-y^2-y} \\ 0 & \frac{-y}{x^2+x-y^2-y} \end{array} \right) \right\} \end{displaymath} \end{center} \section{Ratjordan} \ttindex{ratjordan} {\tt Ratjordan}(${\cal A}$) computes the rational Jordan normal form ${\cal R}$ of the matrix ${\cal A}$. It returns \{${\cal R}, {\cal P}, {\cal P}^{-1}$\} where ${\cal R}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P R P}^{-1} = {\cal A}$. ${\cal A}$ is a square matrix. {\tt load\_package normform;} \begin{displaymath} {\cal A} = \left( \begin{array}{cc} x+y & 5 \\ y & x^2 \end{array} \right) \end{displaymath} {\tt ratjordan}(${\cal A}$) = \begin{center} \begin{displaymath} \left\{ \left( \begin{array}{cc} 0 & -x^3-x^2*y+5*y \\ 1 & x^2+x+y \end{array} \right), \left( \begin{array}{cc} 1 & x+y \\ 0 & y \end{array} \right), \left( \begin{array}{cc} 1 & \frac{-(x+y)}{y} \\ 0 & \hspace{0.2in} \frac{1}{y} \end{array} \right) \right\} \end{displaymath} \end{center} \section{Jordansymbolic} \ttindex{jordansymbolic} {\tt Jordansymbolic}(${\cal A}$) \hspace{0in} computes the Jordan normal form ${\cal J}$of the matrix ${\cal A}$. It returns \{${\cal J}, {\cal L}, {\cal P}, {\cal P}^{-1}$\}, where ${\cal J}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P J P}^ {-1} = {\cal A}$. ${\cal L}$ = \{~{\it ll},~$\xi$~\}, where $\xi$ is a name and {\it ll} is a list of irreducible factors of ${\it p}(\xi)$. ${\cal A}$ is a square matrix. {\tt load\_package normform;}\\ \begin{displaymath} {\cal A} = \left( \begin{array}{cc} 1 & y \\ y^2 & 3 \end{array} \right) \end{displaymath} {\tt jordansymbolic}(${\cal A}$) = \begin{eqnarray} & & \left\{ \left( \begin{array}{cc} \xi_{11} & 0 \\ 0 & \xi_{12} \end{array} \right) , \left\{ \left\{ -y^3+\xi^2-4*\xi+3 \right\}, \xi \right\}, \right. \nonumber \\ & & \hspace{0.1in} \left. \left( \begin{array}{cc} \xi_{11} -3 & \xi_{12} -3 \\ y^2 & y^2 \end{array} \right), \left( \begin{array}{cc} \frac{\xi_{11} -2} {2*(y^3-1)} & \frac{\xi_{11} + y^3 -1}{2*y^2*(y^3+1)} \\ \frac{\xi_{12} -2}{2*(y^3-1)} & \frac{\xi_{12}+y^3-1}{2*y^2*(y^3+1)} \end{array} \right) \right\} \nonumber \end{eqnarray} \vspace{0.2in} \begin{flushleft} \begin{math} {\tt solve(-y^3+xi^2-4*xi+3,xi)}${\tt ;}$ \end{math} \end{flushleft} \vspace{0.1in} \begin{center} \begin{math} \{ \xi = \sqrt{y^3+1} + 2,\, \xi = -\sqrt{y^3+1}+2 \} \end{math} \end{center} \vspace{0.1in} \begin{math} {\tt {\cal J} = sub}{\tt (}{\tt \{ xi(1,1)=sqrt(y^3+1)+2,\, xi(1,2) = -sqrt(y^3+1)+2\},} \end{math} \\ \hspace*{0.29in} {\tt first jordansymbolic (${\cal A}$));} \vspace{0.2in} \begin{displaymath} {\cal J} = \left( \begin{array}{cc} \sqrt{y^3+1} + 2 & 0 \\ 0 & -\sqrt{y^3+1} + 2 \end{array} \right) \end{displaymath} \section{Jordan} \ttindex{jordan} {\tt Jordan}(${\cal A}$) computes the Jordan normal form ${\cal J}$ of the matrix ${\cal A}$. It returns \{${\cal J}, {\cal P}, {\cal P}^{-1}$\}, where ${\cal J}, {\cal P}$, and ${\cal P}^{-1}$ are such that ${\cal P J P}^ {-1} = {\cal A}$. ${\cal A}$ is a square matrix. {\tt load\_package normform;} \begin{displaymath} {\cal A} = \left( \begin{array}{cccccc} -9 & -21 & -15 & 4 & 2 & 0 \\ -10 & 21 & -14 & 4 & 2 & 0 \\ -8 & 16 & -11 & 4 & 2 & 0 \\ -6 & 12 & -9 & 3 & 3 & 0 \\ -4 & 8 & -6 & 0 & 5 & 0 \\ -2 & 4 & -3 & 0 & 1 & 3 \end{array} \right) \end{displaymath} \begin{flushleft} {\tt ${\cal J}$ = first jordan$({\cal A})$;} \end{flushleft} \begin{displaymath} {\cal J} = \left( \begin{array}{cccccc} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & i+2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i+2 \end{array} \right) \end{displaymath}