Artifact 13d993226626b288bfa6fc290db99ced7d06ab56a1d0a5fc93ef237d08c10ce2:
- Executable file
r37/doc/manual2/limits.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2411) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/limits.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2411) [annotate] [blame] [check-ins using]
\chapter{LIMITS: A package for finding limits} \label{LIMITS} \typeout{{LIMITS: A package for finding limits}} {\footnotesize \begin{center} Stanley L. Kameny \\ Los Angeles, U.S.A. \end{center} } \ttindex{LIMITS} LIMITS is a fast limit package for \REDUCE\ for functions which are continuous except for computable poles and singularities, based on some earlier work by Ian Cohen and John P. Fitch. The Truncated Power Series package is used for non-critical points, at which the value of the function is the constant term in the expansion around that point. \index{l'H\^opital's rule} l'H\^opital's rule is used in critical cases, with preprocessing of $\infty - \infty$ forms and reformatting of product forms in order to apply l'H\^opital's rule. A limited amount of bounded arithmetic is also employed where applicable. \section{Normal entry points} \ttindex{LIMIT} \vspace{.1in} \noindent {\tt LIMIT}(EXPRN:{\em algebraic}, VAR:{\em kernel}, LIMPOINT:{\em algebraic}):{\em algebraic} \vspace{.1in} This is the standard way of calling limit, applying all of the methods. The result is the limit of EXPRN as VAR approaches LIMPOINT. \section{Direction-dependent limits} \ttindex{LIMIT+}\ttindex{LIMIT-} \vspace{.1in} \noindent {\tt LIMIT!+}(EXPRN:{\em algebraic}, VAR:{\em kernel}, LIMPOINT:{\em algebraic}):{\em algebraic} \\ \noindent {\tt LIMIT!-}(EXPRN:{\em algebraic}, VAR:{\em kernel}, LIMPOINT:{\em algebraic}):{\em algebraic} \vspace{.1in} If the limit depends upon the direction of approach to the {\tt LIMPOINT}, the functions {\tt LIMIT!+} and {\tt LIMIT!-} may be used. They are defined by: \vspace{.1in} \noindent{\tt LIMIT!+} (EXP,VAR,LIMPOINT) $\rightarrow$ \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\ where EXP* = sub(VAR=VAR+$\epsilon^2$,EXP) and \noindent{\tt LIMIT!-} (EXP,VAR,LIMPOINT) $\rightarrow$ \hspace*{2em}{\tt LIMIT}(EXP*,$\epsilon$,0) \\ where EXP* = sub(VAR=VAR-$\epsilon^2$,EXP) Examples: \begin{verbatim} load_package misc; limit(sin(x)/x,x,0); 1 limit((a^x-b^x)/x,x,0); log(a) - log(b) limit(x/(e**x-1), x, 0); 1 limit!-(sin x/cos x,x,pi/2); infinity limit!+(sin x/cos x,x,pi/2); - infinity limit(x^log(1/x),x,infinity); 0 limit((x^(1/5) + 3*x^(1/4))^2/(7*(sqrt(x + 9) - 3 - x/6))^(1/5),x,0); 3/5 - 6 --------- 1/5 7 \end{verbatim}