Artifact 109ab4633531334faea0e1123cbcf3f9b4c33539ea59f996fb318a3582930f6a:
- Executable file
r38/log/cantens.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 21434) [annotate] [blame] [check-ins using] [more...]
Tue Apr 15 00:32:36 2008 run on win32 % Test of CANTENS.RED % % Authors: H. Caprasse <hubert.caprasse@ulg.ac.be> % % Version and Date: Version 1.1, 15 September 1998. %---------------------------------------------------------------- off errcont; % Default : onespace ?; yes wholespace_dim ?; dim global_sign ? ; 1 signature ?; 0 % answers to the 4 previous commands: yes, dim, 1, 0 wholespace_dim 4; 4 signature 1; 1 global_sign(-1); -1 % answers to the three previous commands: 4, 1, (-1) % answer to the command below: {} show_spaces(); {} % Several spaces: off onespace; onespace ?; no % answer: no show_spaces(); {} define_spaces wholespace={6,signature=1,indexrange=0 .. 5}; t % indexrange command is superfluous since 'wholespace': show_spaces(); {{wholespace,6,signature=1,indexrange=0 .. 5}} rem_spaces wholespace; t define_spaces wholespace={11,signature=1}; t define_spaces mink={4,signature=1,indexrange=0 .. 3}; t define_spaces eucl={6,euclidian,indexrange=4 .. 9}; t show_spaces(); {{wholespace,11,signature=1}, {mink,4,signature=1,indexrange=0 .. 3}, {eucl,6,euclidian,indexrange=4 .. 9}} % % if input error or modifications necessary: % define_spaces eucl={7,euclidian,indexrange=4 .. 10}; *** Warning: eucl cannot be (or is already) defined as space identifier t % % do: % rem_spaces eucl; t define_spaces eucl={7,euclidian,indexrange=4 .. 10}; t show_spaces(); {{wholespace,11,signature=1}, {mink,4,signature=1,indexrange=0 .. 3}, {eucl,7,euclidian,indexrange=4 .. 10}} % done % define_spaces eucl1={1,euclidian,indexrange=11 .. 11}; t show_spaces(); {{wholespace,11,signature=1}, {mink,4,signature=1,indexrange=0 .. 3}, {eucl,7,euclidian,indexrange=4 .. 10}, {eucl1,1,euclidian,indexrange=11 .. 11}} rem_spaces wholespace,mink,eucl,eucl1; t show_spaces(); {} % % Indices can be made to belong to a subspace or replaced % in the whole space: define_spaces eucl={3,euclidean}; t show_spaces(); {{eucl,3,euclidean}} mk_ids_belong_space({a1,a2},eucl); t % a1,a2 belong to the subspace eucl. mk_ids_belong_anyspace a1,a2; t % replaced in the whole space. rem_spaces eucl; t %% %% GENERIC TENSORS: on onespace; wholespace_dim dim; dim tensor te; t te(3,a,-4,b,-c,7); 3 a b 7 te 4 c te(3,a,{x,y},-4,b,-c,7); 3 a b 7 te (x,y) 4 c te(3,a,-4,b,{u,v},-c,7); 3 a b 7 te (u,v) 4 c te({x,y}); te(x,y) make_variables x,y; t te(x,y); te(x,y) te(x,y,a); a te (x,y) remove_variables x; t te(x,y,a); x a te (y) remove_variables y; t % % implicit dependence: % operator op2; depend op1,op2(x); df(op1,op2(x)); df(op1,op2(x)) % the next response is 0: df(op1,op2(y)); 0 clear op2; % case of a tensor: operator op1; depend te,op1(x); df(te(a,-b),op1(x)); a df(te ,op1(x)) b % next the outcome is 0: df(te(a,-b),op1(y)); 0 % tensor x; t depend te,x; % outcome is NOT 0: df(te(a,-b),x(c)); a c df(te ,x ) b % % Substitutions: sub(a=-c,te(a,b)); b te c sub(a=-1,te(a,b)); b te 1 % the following operation is wrong: sub(a=-0,te(a,b)); 0 b te % should be made as following to be correct: sub(a=-!0,te(a,b)); b te 0 % dummy indices recognition dummy_indices(); {} te(a,b,-c,-a); a b te c a dummy_indices(); {a} te(a,b,-c,-a); a b te c a dummy_indices(); {a} % hereunder an error message correctly occurs: on errcont; te(a,b,-c,a); ***** ((c) (a b a)) are inconsistent lists of indices off errcont; sub(c=b,te(a,b,-c,-a)); a b te b a dummy_indices(); {b,a} % dummy indices suppression: on errcont; te(d,-d,d); ***** ((d) (d d)) are inconsistent lists of indices off errcont; dummy_indices(); {d,b,a} rem_dummy_indices d; t te(d,d); d d te dummy_indices(); {b,a} rem_dummy_indices a,b; t onespace ?; yes % case of space of integer dimension: wholespace_dim 4; 4 signature 0; 0 % 7 out of range on errcont; te(3,a,-b,7); ***** numeric indices out of range off errcont; te(3,a,-b,3); 3 a 3 te b te(4,a,-b,4); 4 a 4 te b % an 'out-of-range' error is issued: on errcont; sub(a=5,te(3,a,-b,3)); ***** numeric indices out of range off errcont; signature 1; 1 % now indices should run from 0 to 3 => error: on errcont; te(4,a,-b,4); ***** numeric indices out of range off errcont; % correct: te(0,a,-b,3); 0 a 3 te b % off onespace; define_spaces wholespace={4,euclidean}; t % We MUST say that te BELONG TO A SPACE, here to wholespace: make_tensor_belong_space(te,wholespace); wholespace on errcont; te(a,5,-b); ***** numeric indices out of range off errcont; te(a,4,-b); a 4 te b rem_spaces wholespace; t define_spaces wholespace={5,signature=1}; t define_spaces eucl={1,signature=0}; t show_spaces(); {{wholespace,5,signature=1}, {eucl,1,signature=0}} make_tensor_belong_space(te,eucl); eucl te(1); 1 te % hereunder, an error message is issued: on errcont; te(2); ***** numeric indices out of range off errcont; % hereunder, an error message should be issued, it is not % because no indexrange has been declared: te(0); 0 te rem_spaces eucl; t define_spaces eucl={1,signature=0,indexrange=1 .. 1}; t % NOW an error message is issued: on errcont; te(0); ***** numeric indices do not belong to (sub)-space off errcont; te(1); 1 te % again an error message: on errcont; te(2); ***** numeric indices do not belong to (sub)-space off errcont; % rem_dummy_indices a,b,c,d; t % symmetry properties: % symmetric te; te(a,-b,c,d); a c d te b remsym te; antisymmetric te; te(a,b,-c,d); a b d - te c remsym te; % mixed symmetries: tensor r; t % symtree(r,{!+,{!-,1,2},{!-,3,4}}); ra:=r(b,a,c,d)$ canonical ra; a b c d - r ra:=r(c,d,a,b)$ canonical ra; a b c d r % here canonical is short-cutted ra:=r(b,b,c,a); ra := 0 % % symmetrization: on onespace; symmetrize(r(a,b,c,d),r,permutations,perm_sign); a b c d a b d c a c b d a c d b a d b c a d c b b a c d r - r - r + r + r - r - r b a d c b c a d b c d a b d a c b d c a c a b d c a d b + r + r - r - r + r + r - r c b a d c b d a c d a b c d b a d a b c d a c b d b a c - r + r + r - r - r + r + r d b c a d c a b d c b a - r - r + r canonical ws; a b c d a c b d a d b c 8*(r - r + r ) off onespace; symmetrize({a,b,c,d},r,cyclicpermlist); a b c d b c d a c d a b d a b c r + r + r + r canonical ws; a b c d a d b c 2*(r - r ) rem_tensor r; t % Declared bloc-diagonal tensor: rem_spaces wholespace,eucl; t define_spaces wholespace={7,signature=1}; t define_spaces mink={4,signature=1,indexrange=0 .. 3}; t define_spaces eucl={3,euclidian,indexrange=4 .. 6}; t show_spaces(); {{wholespace,7,signature=1}, {mink,4,signature=1,indexrange=0 .. 3}, {eucl,3,euclidian,indexrange=4 .. 6}} make_tensor_belong_space(te,eucl); eucl make_bloc_diagonal te; t mk_ids_belong_space({a,b,c},eucl); t te(a,b,z); a b z te mk_ids_belong_space({m1,m2},mink); t te(a,b,m1); 0 te(a,b,m2); 0 mk_ids_belong_anyspace a,b,c,m1,m2; t te(a,b,m2); a b m2 te % how to ASSIGN a particular component ? % take the simplest context: rem_spaces wholespace,mink,eucl; t on onespace; te({x,y},a,-0)==x*y*te(a,-0); a te *x*y 0 te({x,y},a,-0); a te *x*y 0 te({x,y},a,0); a 0 te (x,y) % hereunder an error message is issued because already assigned: on errcont; te({x,y},a,-0)==x*y*te(a,-0); a ***** te *x*y invalid as setvalue kernel 0 off errcont; % clear value: rem_value_tens te({x,y},a,-0); t te({x,y},a,-0); a te (x,y) 0 te({x,y},a,-0)==(x+y)*te(a,-0); a te *(x + y) 0 % A small illustration te(1)==sin th * cos phi; cos(phi)*sin(th) te(-1)==sin th * cos phi; cos(phi)*sin(th) te(2)==sin th * sin phi; sin(phi)*sin(th) te(-2)==sin th * sin phi; sin(phi)*sin(th) te(3)==cos th ; cos(th) te(-3)==cos th ; cos(th) for i:=1:3 sum te(i)*te(-i); 2 2 2 2 2 cos(phi) *sin(th) + cos(th) + sin(phi) *sin(th) rem_value_tens te; t te(2); 2 te let te({x,y},-0)=x*y; te({x,y},-0); x*y te({x,y},0); 0 te (x,y) te({x,u},-0); te (x,u) 0 for all x,a let te({x},a,-b)=x*te(a,-b); te({u},1,-b); 1 te *u b te({u},c,-b); c te *u b te({u},b,-b); b te *u b te({u},a,-a); a te (u) a for all x,a clear te({x},a,-b); te({u},c,-b); c te (u) b % rule for indices only for all a,b let te({x},a,-b)=x*te(a,-b); te({x},c,-b); c te *x b te({x},a,-a); a te *x a % A BUG still exists for -0 i.e. rule does NOT apply: te({x},a,-0); a te (x) 0 % the cure is to use -!0 in this case te({x},0,-!0); 0 te *x 0 % % local rules: % rul:={te(~a) => sin a}; ~a rul := {te => sin(a)} te(1) where rul; sin(1) % rul1:={te(~a,{~x,~y}) => x*y*sin(a)}; ~a rul1 := {te (~x,~y) => x*y*sin(a)} % te(a,{x,y}) where rul1; sin(a)*x*y te({x,y},a) where rul1; sin(a)*x*y % rul2:={te(-~a,{~x,~y}) => x*y*sin(-a)}; rul2 := {te (~x,~y) => x*y*sin( - a)} ~a % te(-a,{x,y}) where rul2; - sin(a)*x*y te({x,y},-a) where rul2; - sin(a)*x*y %% CANONICAL % % 1. Coherence of tensorial indices. % tensor te,tf; *** Warning: te redefined as generic tensor t dummy_indices(); {a,b} make_tensor_belong_anyspace te; t on errcont; bb:=te(a,b)*te(-b)*te(b); a b b bb := te *te *te b % hereunder an error message is issued: canonical bb; ***** ((b) (a b b)) are inconsistent lists of indices off errcont; bb:=te(a,b)*te(-b); a b bb := te *te b % notice how it is rewritten by canonical: canonical bb; a b te *te b % dummy_indices(); {a,b} aa:=te(d,-c)*tf(d,-c); d d aa := te *tf c c % if a and c are FREE no error message: canonical aa; d d te *tf c c % do NOT introduce powers for NON-INVARIANT tensors: aa:=te(d,-c)*te(d,-c); d 2 aa := (te ) c % Powers are taken away canonical aa; d te c % A trace CANNOT be squared because powers are removed by 'canonical': cc:=te(a,-a)^2$ canonical cc; a te a % % Correct writing of the previous squared: cc:=te(a,-a)*te(b,-b)$ canonical cc; a b te *te a b % all terms must have the same variance: on errcont; aa:=te(a,c)+x^2; a c 2 aa := te + x canonical aa; ***** scalar added with tensor(s) aa:=te(a,b)+tf(a,c); a b a c aa := te + tf canonical aa; ***** mismatch in free indices : ((a c) (a b)) off errcont; dummy_indices(); {a,b} rem_dummy_indices a,b,c; t dummy_indices(); {} % a dummy VARIABLE is NOT a dummy INDEX dummy_names b; t dummy_indices(); {} % so, no error message in the following: canonical(te(b,c)*tf(b,c)); b c b c te *tf % it is an incorrect input for a variable. % correct input is: canonical(te({b},c)*tf({b},c)); c c te (b)*tf (b) clear_dummy_names; t % contravariant indices are placed before covariant ones if possible. % i.e. Riemanian spaces by default: pp:=te(a,-a)+te(-a,a)+1; a a pp := te + te + 1 a a canonical pp; a 2*te + 1 a pp:=te(a,-c)+te(-b,b,a,-c); b a a pp := te + te b c c canonical pp; a b a te + te c b c pp:=te(r,a,-f,d,-a,f)+te(r,-b,-c,d,b,c); r d b c r a d f pp := te + te b c f a canonical pp; r a b d 2*te a b % here, a case where a normal form cannot be obtained: tensor nt; t a1:=nt(-a,d)*nt(-c,a); d a a1 := nt *nt a c a2:=nt(-c,-a)*nt(a,d); a d a2 := nt *nt c a % obviously, a1-a2 =0, but .... canonical(a1-a2); d a a d - nt *nt + nt *nt a c c a % does give the same expression with the sign changed. % zero is either: canonical a1 -a2; 0 % or a1 -canonical a2; 0 % below the result is a2: canonical a1; a d nt *nt c a % below result is a1 again: canonical ws; d a nt *nt a c % the above manipulations are NOT DONE if space is AFFINE off onespace; define_spaces aff={dd,affine}; t make_tensor_belong_space(te,aff); aff % dummy indices MUST be declared to belong % to a well defined space. here to 'aff': mk_ids_belong_space({a,b},aff); t canonical(te(-a,a)); a te a canonical(te(-a,a)+te(b,-b)); a a te + te a a canonical(te(-a,c)); c te a % put back the system in the previous status: make_tensor_belong_anyspace te; t mk_ids_belong_anyspace a,b; t rem_spaces aff; t on onespace; % % 2. Summations with DELTA tensor. % make_partic_tens(delta,delta); t aa:=delta(a,-b)*delta(b,-c)*delta(c,-a) + 1; a b c aa := delta *delta *delta + 1 b c a % below, answer is dim+1: canonical aa; dim + 1 aa:=delta(a,-b)*delta(b,-c)*delta(c,-d)*te(d,e)$ canonical aa; a e te % 3. Summations with DELTA and ETA tensors. make_partic_tens(eta,eta); t signature 1; 1 aa:=eta(a,b)*eta(-b,-c); a b aa := eta *eta b c canonical aa; a delta c aa:=eta(a,b)*eta(-b,-c)*eta(c,d); a b c d aa := eta *eta *eta b c canonical aa; a d eta aa:=eta(a,b)*eta(-b,-c)*eta(d,c)*te(d,-a) +te(d,d); a b c d d d d aa := eta *eta *eta *te + te b c a canonical aa; d d 2*te aa:=delta(a,-b)*eta(b,c); a b c aa := delta *eta b canonical aa; a c eta aa:=delta(a,-b)*delta(d,-a)*eta(-c,-d)*eta(b,c); a d b c aa := delta *delta *eta *eta b a c d % below the answer is dim: canonical aa; dim aa:=delta(a,-b)*delta(d,-a)*eta(-d,-e)*te(f,g,e); a d f g e aa := delta *delta *eta *te b a d e canonical aa; f g te b % Summations with the addition of the METRIC tensor: make_partic_tens(g,metric); t g(1,2,{x})==1/4*sin x; sin(x) -------- 4 g({x},1,2); sin(x) -------- 4 aa:=g(a,b)*g(-a,-c); a b aa := g *g a c canonical aa; b delta c aa:=g(a,b)*g(c,d)*eta(-c,-b); a b c d aa := eta *g *g b c % answer is g(a,d): canonical aa; a d g tensor te; *** Warning: te redefined as generic tensor t aa:=g(a,b)*g(c,d)*eta(-c,-e)*eta(e,f)*te(-f,g); e f a b c d g aa := eta *eta *g *g *te c e f canonical aa; a b d g g *te % Summations with the addition of the EPSILON tensor. dummy_indices(); {c,f,b,a} rem_dummy_indices a,b,c,f; t dummy_indices(); {} wholespace_dim ?; dim signature ?; 1 % define the generalized delta function: make_partic_tens(gd,del); t make_partic_tens(epsilon,epsilon); t aa:=epsilon(a,b)*epsilon(-c,-d); a b aa := epsilon *epsilon c d % Minus sign reflects the chosen signature. canonical aa; a b - gd c d aa:=epsilon(a,b)*epsilon(-a,-b); a b aa := epsilon *epsilon a b canonical aa; dim*( - dim + 1) aa:=epsilon(a,b,c,d)*epsilon(-a,-b,-c,-e); a b c d aa := epsilon *epsilon a b c e canonical aa; d 3 2 delta *( - dim + 6*dim - 11*dim + 6) e on exdelt; % extract delta function down to the bottom: aa:=epsilon(a,b,c)*epsilon(-b,-d,-e); a b c aa := epsilon *epsilon b d e canonical aa; a c a c a c delta *delta *dim - 2*delta *delta - delta *delta *dim d e d e e d a c + 2*delta *delta e d off exdelt; % below expressed in terms of 'gd' tensor. canonical aa; a c gd *(dim - 2) d e rem_dummy_indices a; t aa:=epsilon(- b,-c)*eta(a,b)*eta(a,c); a b a c aa := epsilon *eta *eta b c % answer below is zero: canonical aa; 0 aa:=epsilon(a,b,c)*te(-a)*te(-b); a b c aa := epsilon *te *te a b % below the result is again zero. canonical aa; 0 % tensor tf,tg; *** Warning: tf redefined as generic tensor t aa:=epsilon(a,b,c)*te(-a)*tf(-b)*tg(-c)+epsilon(d,e,f)*te(-d)*tf(-e)*tg(-f); a b c d e f aa := epsilon *te *tf *tg + epsilon *te *tf *tg a b c d e f % below the result is twice the first term. canonical aa; a b c 2*epsilon *te *tf *tg a b c aa:=epsilon(a,b,c)*te(-a)*tf(-c)*tg(-b)+epsilon(d,e,f)*te(-d)*tf(-e)*tg(-f); a b c d e f aa := epsilon *te *tf *tg + epsilon *te *tf *tg a c b d e f % below the result is zero. canonical aa; 0 % An illustration when working inside several spaces. rem_dummy_indices a,b,c,d,e,f; t off onespace; define_spaces wholespace={dim,signature=1}; t define_spaces sub4={4,signature=1}; t define_spaces subd={dim-4,signature=0}; t show_spaces(); {{wholespace,dim,signature=1}, {sub4,4,signature=1}, {subd,dim - 4,signature=0}} make_partic_tens(epsilon,epsilon); *** Warning: epsilon redefined as particular tensor t make_tensor_belong_space(epsilon,sub4); sub4 make_partic_tens(kappa,epsilon); *** Warning: kappa MUST belong to a space t make_tensor_belong_space(kappa,subd); subd show_epsilons(); {{kappa,subd},{epsilon,sub4}} mk_ids_belong_space({i,j,k,l,m,n,r,s},sub4); t mk_ids_belong_space({a,b,c,d,e,f},subd); t off exdelt; aa:=kappa(a,b,c)*kappa(-d,-e,-f)*epsilon(i,j,k,l)*epsilon(-k,-l,-i,-j); i j k l a b c aa := epsilon *epsilon *kappa *kappa i j k l d e f canonical aa; a b c - 24*gd d e f aa:=kappa(a,b,c)*kappa(-d,-e,-f)*epsilon(i,j,k,l)*epsilon(-m,-n,-r,-s); i j k l a b c aa := epsilon *epsilon *kappa *kappa m n r s d e f canonical aa; a b c i j k l - gd *gd d e f m n r s end; Time for test: 54 ms, plus GC time: 4 ms