Artifact 0e74c58dc971b04c00a6ac839d4d90cfae0df83e85a3f38e772d934a07e2eb65:
- Executable file
r37/packages/redlog/ofsfsism.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 12155) [annotate] [blame] [check-ins using] [more...]
% ---------------------------------------------------------------------- % $Id: ofsfsism.red,v 1.6 1999/03/23 07:41:39 dolzmann Exp $ % ---------------------------------------------------------------------- % Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm % ---------------------------------------------------------------------- % $Log: ofsfsism.red,v $ % Revision 1.6 1999/03/23 07:41:39 dolzmann % Changed copyright information. % % Revision 1.5 1996/10/07 12:03:33 sturm % Added fluids for CVS and copyright information. % % Revision 1.4 1996/09/30 16:56:12 sturm % Cleaned up the use of several (conditional) negate-relation procedures. % % Revision 1.3 1996/07/15 13:29:10 sturm % Modified data structure descriptions for automatic processing. % % Revision 1.2 1996/07/13 11:20:35 dolzmann % Added black box implementation ofsf_smcpknowl. % Removed black box implementations ofsf_smsimpl!-impl and % ofsf_smsimpl!-equiv1. % % Revision 1.1 1996/03/22 12:14:17 sturm % Moved and split. % % ---------------------------------------------------------------------- lisp << fluid '(ofsf_sism_rcsid!* ofsf_sism_copyright!*); ofsf_sism_rcsid!* := "$Id: ofsfsism.red,v 1.6 1999/03/23 07:41:39 dolzmann Exp $"; ofsf_sism_copyright!* := "Copyright (c) 1995-1999 by A. Dolzmann and T. Sturm" >>; module ofsfsism; % Ordered field standard form smart simplification. Submodule of [ofsf]. %DS % <irl> ::= (<ir>,...) % <ir> ::= <para> . <db> % <db> ::= (<le>,...) % <le> ::= <label> . <entry> % <label> ::= <integer> % <entry> ::= <of relation> . <standard quotient> procedure ofsf_smrmknowl(knowl,v); % Ordered field standard form remove from knowledge. [knowl] is an % IRL; [v] is a variable. Returns an IRL. Destructively removes any % information about [v] from [knowl]. if null knowl then nil else if v member kernels caar knowl then ofsf_smrmknowl(cdr knowl,v) else << cdr knowl := ofsf_smrmknowl(cdr knowl,v); knowl >>; procedure ofsf_smcpknowl(knowl); for each ir in knowl collect car ir . append(cdr ir,nil); procedure ofsf_smupdknowl(op,atl,knowl,n); % Ordered field standard form update knowledge. [op] is one of % [and], [or]; [atl] is a list of (simplified) atomic formulas; % [knowl] is a conjunctive IRL; [n] is the current level. Returns % an IRL. Destructively updates [knowl] wrt. the [atl] information. begin scalar w,ir,a; while atl do << a := if op eq 'and then car atl else ofsf_negateat car atl; atl := cdr atl; ir := ofsf_at2ir(a,n); if w := assoc(car ir,knowl) then << cdr w := ofsf_sminsert(cadr ir,cdr w); if cdr w eq 'false then << atl := nil; knowl := 'false >> % else [ofsf_sminsert] has updated [cdr w] destructively. >> else knowl := ir . knowl >>; return knowl end; procedure ofsf_smmkatl(op,oldknowl,newknowl,n); % Ordered field standard form make atomic formula list. [op] is one % of [and], [or]; [oldknowl] and [newknowl] are IRL's; [n] is an % integer. Returns a list of atomic formulas. Depends on switch % [rlsipw]. if op eq 'and then ofsf_smmkatl!-and(oldknowl,newknowl,n) else % [op eq 'or] ofsf_smmkatl!-or(oldknowl,newknowl,n); procedure ofsf_smmkatl!-and(oldknowl,newknowl,n); begin scalar w; if not !*rlsipw and !*rlsipo then return ofsf_irl2atl('and,newknowl,n); return for each ir in newknowl join << w := atsoc(car ir,oldknowl); if null w then ofsf_ir2atl('and,ir,n) else ofsf_smmkatl!-and1(w,ir,n) >>; end; procedure ofsf_smmkatl!-and1(oir,nir,n); begin scalar w,parasq; parasq := !*f2q car nir; return for each le in cdr nir join if car le = n then << if cadr le memq '(lessp greaterp) and (w := ofsf_smmkat!-and2(cdr oir,cdr le,parasq)) then {w} else {ofsf_entry2at('and,cdr le,parasq)} >> end; procedure ofsf_smmkat!-and2(odb,ne,parasq); % Ordered field standard form smart simplify make atomic formula. % [odb] is a DB; [ne] is an entry with its relation being one of % [lessp], [greaterp]; [parasq] is a numerical SQ. Returns an % atomic formula. begin scalar w; w := ofsf_smdbgetrel(cdr ne,odb); if w eq 'neq then (if !*rlsipw then << if car ne eq 'lessp then return ofsf_entry2at('and,'leq . cdr ne,parasq); % We know [car ne eq 'greaterp]. return ofsf_entry2at('and,'geq . cdr ne,parasq) >>) else if w memq '(leq geq) then if not !*rlsipo then return ofsf_entry2at('and,'neq . cdr ne,parasq) end; procedure ofsf_smmkatl!-or(oldknowl,newknowl,n); begin scalar w; return for each ir in newknowl join << w := atsoc(car ir,oldknowl); if null w then ofsf_ir2atl('or,ir,n) else ofsf_smmkatl!-or1(w,ir,n) >>; end; procedure ofsf_smmkatl!-or1(oir,nir,n); begin scalar w,parasq; parasq := !*f2q car nir; return for each le in cdr nir join if car le = n then << if cadr le memq '(lessp greaterp equal) and (w := ofsf_smmkat!-or2(cdr oir,cdr le,parasq)) then {w} else {ofsf_entry2at('or,cdr le,parasq)} >> end; procedure ofsf_smmkat!-or2(odb,ne,parasq); begin scalar w; w := ofsf_smdbgetrel(cdr ne,odb); if w eq 'neq then (if not !*rlsipw then << if car ne eq 'lessp then return ofsf_entry2at('or,'leq . cdr ne,parasq); % We know [car ne eq 'greaterp]! return ofsf_entry2at('or,'geq . cdr ne,parasq) >>) else if w memq '(leq geq) then << if car ne memq '(lessp greaterp) then return ofsf_entry2at('or,'neq . cdr ne,parasq); % We know [car ne eq 'equal]. if !*rlsipo then return ofsf_entry2at('or,ofsf_anegrel w . cdr ne,parasq) >> end; procedure ofsf_smdbgetrel(abssq,db); if abssq = cddar db then cadar db else if cdr db then ofsf_smdbgetrel(abssq,cdr db); procedure ofsf_at2ir(atf,n); % Ordered field standard form atomic formula to IR. [atf] is an % atomic formula; [n] is an integer. Returns the IR representing % [atf] on level [n]. begin scalar op,par,abs,c; op := ofsf_op atf; abs := par := ofsf_arg2l atf; while not domainp abs do abs := red abs; par := addf(par,negf abs); c := sfto_dcontentf(par); par := quotf(par,c); abs := quotsq(!*f2q abs,!*f2q c); return par . {n . (op . abs)} end; procedure ofsf_irl2atl(op,irl,n); % Ordered field standard form IRL to atomic formula list. [irl] is % an IRL; [n] is an integer. Returns a list of atomic formulas % containing the level-[n] atforms encoded in IRL. for each ir in irl join ofsf_ir2atl(op,ir,n); procedure ofsf_ir2atl(op,ir,n); (for each le in cdr ir join if car le = n then {ofsf_entry2at(op,cdr le,a)}) where a=!*f2q car ir; procedure ofsf_entry2at(op,entry,parasq); if !*rlidentify then cl_identifyat ofsf_entry2at1(op,entry,parasq) else ofsf_entry2at1(op,entry,parasq); procedure ofsf_entry2at1(op,entry,parasq); ofsf_0mk2(ofsf_clnegrel(car entry,op eq 'and),numr addsq(parasq,cdr entry)); procedure ofsf_sminsert(le,db); % Ordered field standard form smart simplify insert. [le] is a % marked entry; [db] is a database. Returns a database. % Destructively inserts [le] into [db]. begin scalar a,w,scdb,oscdb; repeat << w := ofsf_sminsert1(cadr car db,cddr car db,cadr le,cddr le,car le); if w and not idp w then << % identifiers [false] and [true] possible. db := cdr db; le := w >> >> until null w or idp w or null db; if w eq 'false then return 'false; if w eq 'true then return db; if null db then return {le}; oscdb := db; scdb := cdr db; while scdb do << a := car scdb; scdb := cdr scdb; w := ofsf_sminsert1(cadr a,cddr a,cadr le,cddr le,car le); if w eq 'true then << scdb := nil; a := 'true >> else if w eq 'false then << scdb := nil; a := 'false >> else if w then << cdr oscdb := scdb; le := w >> else oscdb := cdr oscdb >>; if a eq 'false then return 'false; if a eq 'true then return db; return le . db end; procedure ofsf_sminsert1(r1,a,r2,b,n); % Ordered field standard form smart simplify insert. [r1], [r2] are % relations, [a], [b] are absolute summands in SQ representation; % [n] is the current level. Returns [nil], [false], [true], or a % marked entry. Simplification of $\alpha=[r2](f+b,0)$ under the % condition $\gamma=[r1](f+a,0)$ is considered: [nil] means there % is no simplification posssible; [true] means that $\gamma$ % implies $\alpha$; [false] means that $\alpha$ contradicts % $\gamma$; the atomic formula encoded by a resulting marked entry % wrt. $f$ is equivalent to $\alpha$ under $\gamma$. begin scalar w,diff,n; diff := numr subtrsq(a,b); if null diff then << w := ofsf_smeqtable(r1,r2); if w eq 'false then return 'false; if r1 eq w then return 'true; return n . (w . a) >>; if minusf diff then << w := ofsf_smordtable(r1,r2); if atom w then return w; if eqcar(w,r1) and cdr w then return 'true; return n . (car w . if cdr w then a else b) >>; w := ofsf_smordtable(r2,r1); if atom w then return w; if eqcar(w,r1) and null cdr w then return 'true; return n . (car w . if cdr w then b else a) end; procedure ofsf_smeqtable(r1,r2); % Ordered field standard form smart simplify equal absolute % summands table. [r1], [r2] are relations. Returns [false] or a % relation $R$ such that $R(f+a,0)$ is equivalent to $[r1](f+a,0) % \land [r2](f+a,0)$. begin scalar al; al := '((equal . ((equal . equal) (neq . false) (geq . equal) (leq . equal) (greaterp . false) (lessp . false))) (neq . ((neq . neq) (geq . greaterp) (leq . lessp) (greaterp . greaterp) (lessp . lessp))) (geq . ((geq . geq) (leq . equal) (greaterp . greaterp) (lessp . false))) (leq . ((leq . leq) (greaterp . false) (lessp . lessp))) (greaterp . ((greaterp . greaterp) (lessp . false))) (lessp . ((lessp . lessp)))); return cdr (atsoc(r2,atsoc(r1,al)) or atsoc(r1,atsoc(r2,al))) end; procedure ofsf_smordtable(r1,r2); % Ordered field standard form smart simplify ordered absolute % summands table. [r1], [r2] are relations. Returns [nil], which % means that no simplification is possible, [false] or a pair $R . % s$ where $R$ is a relation and $s$ is one of [T], [nil]. For % absolute summands $a<b$ we have $[r1](f+a,0) \land [r2](f+b,0)$ % equivalent to $R(f+a,0)$ in case $[s]=[T]$ or to $R(f+b,0)$ in % case $[s]=[nil]$. begin scalar al; al := '((equal . ((equal . false) (neq . (equal . T)) (geq . (equal .T)) (leq . false) (greaterp . (equal . T)) (lessp . false))) (neq . ((equal . (equal . nil)) (neq . nil) (geq . nil) (leq . (leq . nil)) (greaterp . nil) (lessp . (lessp . nil)))) (geq . ((equal . false) (neq . (geq . T)) (geq . (geq . T)) (leq . false) (greaterp . (geq . T)) (lessp . false))) (leq . ((equal . (equal . nil)) (neq . nil) (geq . nil) (leq . (leq . nil)) (greaterp . nil) (lessp . (lessp . nil)))) (greaterp . ((equal . false) (neq . (greaterp . T)) (geq . (greaterp . T)) (leq . false) (greaterp . (greaterp . T)) (lessp . false))) (lessp . ((equal . (equal . nil)) (neq . nil) (geq . nil) (leq . (leq . nil)) (greaterp . nil) (lessp . (lessp . nil))))); return cdr atsoc(r2,atsoc(r1,al)) end; endmodule; % [ofsfsism] end; % of file