Artifact 0df11bd8fbfafd852967c72230313aeff7394a6a2fd7d7a52074d35cf4fa1277:
- Executable file
r37/doc/manual2/ztrans.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 4571) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/ztrans.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 4571) [annotate] [blame] [check-ins using]
\chapter{ZTRANS: $Z$-transform package} \label{ZTRANS} \typeout{{ZTRANS: $Z$-transform package}} {\footnotesize \begin{center} Wolfram Koepf and Lisa Temme \\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] e--mail: Koepf@zib.de \end{center} } \ttindex{ZTRANS} The $Z$-Transform of a sequence $\{f_n\}$ is the discrete analogue of the Laplace Transform, and \[{\cal Z}\{f_n\} = F(z) = \sum^\infty_{n=0} f_nz^{-n}\;.\] \\ This series converges in the region outside the circle $|z|=|z_0|= \limsup\limits_{n \rightarrow \infty} \sqrt[n]{|f_n|}\;.$ In the same way that a Laplace Transform can be used to solve differential equations, so $Z$-Transforms can be used to solve difference equations. \begin{tabbing} {\bf SYNTAX:}\ \ {\tt ztrans($f_n$, n, z)}\ \ \ \ \ \ \ \ \=where $f_n$ is an expression, and $n$,$z$ \\ \> are identifiers.\\ \end{tabbing} \ttindex{ztrans} \begin{tabbing} This pack\=age can compute the \= $Z$-Transforms of the \=following list of $f_n$, and \\ certain combinations thereof.\\ \\ \>$1$ \>$e^{\alpha n}$ \>$\frac{1}{(n+k)}$ \\ \\ \>$\frac{1}{n!}$ \>$\frac{1}{(2n)!}$ \>$\frac{1}{(2n+1)!}$ \\ \\ \>$\frac{\sin(\beta n)}{n!}$ \>$\sin(\alpha n+\phi)$ \>$e^{\alpha n} \sin(\beta n)$ \\ \\ \>$\frac{\cos(\beta n)}{n!}$ \>$\cos(\alpha n+\phi)$ \>$e^{\alpha n} \cos(\beta n)$ \\ \\ \>$\frac{\sin(\beta (n+1))}{n+1}$ \>$\sinh(\alpha n+\phi)$ \>$\frac{\cos(\beta (n+1))}{n+1}$ \\ \\ \>$\cosh(\alpha n+\phi)$ \>${n+k \choose m}$\\ \end{tabbing} \begin{tabbing} \underline {{\bf Other Combinations}}\= \\ \\ \underline {Linearity} \>${\cal Z} \{a f_n+b g_n \} = a{\cal Z} \{f_n\}+b{\cal Z}\{g_n\}$ \\ \\ \underline {Multiplication by $n$} \>${\cal Z} \{n^k \cdot f_n\} = -z \frac{d}{dz} \left({\cal Z}\{n^{k-1} \cdot f_n,n,z\} \right)$ \\ \\ \underline {Multiplication by $\lambda^n$} \>${\cal Z} \{\lambda^n \cdot f_n\}=F \left(\frac{z}{\lambda}\right)$ \\ \\ \underline {Shift Equation} \>${\cal Z} \{f_{n+k}\} = z^k \left(F(z) - \sum\limits^{k-1}_{j=0} f_j z^{-j}\right)$ \\ \\ \underline {Symbolic Sums} \> ${\cal Z} \left\{ \sum\limits_{k=0}^{n} f_k \right\} = \frac{z}{z-1} \cdot {\cal Z} \{f_n\}$ \\ \\ \>${\cal Z} \left\{ \sum\limits_{k=p}^{n+q} f_k \right\}$ \ \ \ combination of the above \\ \\ where $k$,$\lambda \in$ {\bf N}$- \{0\}$; and $a$,$b$ are variables or fractions; and $p$,$q \in$ {\bf Z} or \\ are functions of $n$; and $\alpha$, $\beta$ and $\phi$ are angles in radians. \end{tabbing} The calculation of the Laurent coefficients of a regular function results in the following inverse formula for the $Z$-Transform: If $F(z)$ is a regular function in the region $|z|> \rho$ then $\exists$ a sequence \{$f_n$\} with ${\cal Z} \{f_n\}=F(z)$ given by \[f_n = \frac{1}{2 \pi i}\oint F(z) z^{n-1} dz\] \begin{tabbing} {\bf SYNTAX:}\ \ {\tt invztrans($F(z)$, z, n)}\ \ \ \ \ \ \ \ \=where $F(z)$ is an expression, \\ \> and $z$,$n$ are identifiers. \end{tabbing} \ttindex{invztrans} \begin{tabbing} This \= package can compute the Inverse \= Z-Transforms of any rational function, \\ whose denominator can be factored over ${\bf Q}$, in addition to the following list \\ of $F(z)$.\\ \\ \> $\sin \left(\frac{\sin (\beta)}{z} \ \right) e^{\left(\frac{\cos (\beta)}{z} \ \right)}$ \> $\cos \left(\frac{\sin (\beta)}{z} \ \right) e^{\left(\frac{\cos (\beta)}{z} \ \right)}$ \\ \\ \> $\sqrt{\frac{z}{A}} \sin \left( \sqrt{\frac{z}{A}} \ \right)$ \> $\cos \left( \sqrt{\frac{z}{A}} \ \right)$ \\ \\ \> $\sqrt{\frac{z}{A}} \sinh \left( \sqrt{\frac{z}{A}} \ \right)$ \> $\cosh \left( \sqrt{\frac{z}{A}} \ \right)$ \\ \\ \> $z \ \log \left(\frac{z}{\sqrt{z^2-A z+B}} \ \right)$ \> $z \ \log \left(\frac{\sqrt{z^2+A z+B}}{z} \ \right)$ \\ \\ \> $\arctan \left(\frac{\sin (\beta)}{z+\cos (\beta)} \ \right)$ \\ \end{tabbing} here $k$,$\lambda \in$ {\bf N}$ - \{0\}$ and $A$,$B$ are fractions or variables ($B>0$) and $\alpha$,$\beta$, \& $\phi$ are angles in radians. Examples: \begin{verbatim} ztrans(sum(1/factorial(k),k,0,n),n,z); 1/z e *z -------- z - 1 invztrans(z/((z-a)*(z-b)),z,n); n n a - b --------- a - b \end{verbatim}