Artifact 0d0eb2e7020b57b452dff29cf44796d4f8476f853eb2a00eb1f4f90b6b1d1f54:
- File
r35/xmpl/ghyper.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1084) [annotate] [blame] [check-ins using] [more...]
% Test cases for hypergeometric functions % from Wolfram Koepf: Power Series in Computer Algebra % J. Symbolic Computation 13, (1992) load_package specfn2; hypergeometric({-alpha},{},x); hypergeometric({},{},x); x * hypergeometric({1,1},{2},x); x * hypergeometric({},{3/2},-x^2/4); hypergeometric({},{1/2},-x^2/4); x * hypergeometric({},{3/2},x^2/4); hypergeometric({},{1/2},x^2/4); x * hypergeometric({1/2,1/2},{3/2},x^2); x * hypergeometric({1/2,1},{3/2},-x^2); x * hypergeometric({1/2,1/2},{3/2},-x^2); x * hypergeometric({1/2,1},{3/2},x^2); % another example which shows the polynomial case: hypergeometric({12,12/34},{3},x); % Some more (nontrivial) examples from % Graham, Knuth, Ptashnik: Concrete Mathematics % Addison-Wesley Publishing Company, 1989 HYPERGEOMETRIC({a,b,-n},{c,a+b-c-n+1},1); % is known for integers though hypergeometric({a,b,-4},{c,a+b-c-4+1},z); hypergeometric({1-c-2n,-2n},{c},1); hypergeometric({a,b},{1+b-a},-1); % Kummer's formula (z=1) hypergeometric({a,b},{c},1); end;