Artifact 0c7ff3d26ce263c7866ceb37d87351b03763750280306efa577204dc74a59e94:
- File
r34.1/lib/numeric.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 3471) [annotate] [blame] [check-ins using] [more...]
on errcont; bounds (x,x=(1 .. 2)); bounds (2*x,x=(1 .. 2)); bounds (x**3,x=(1 .. 2)); bounds (x*y,x=(1 .. 2),y=(-1 .. 0)); bounds (x**3+y,x=(1 .. 2),y=(-1 .. 0)); bounds (x**3/y,{x=(1 .. 2),y=(-1 .. -0.5)}); bounds (x**3/y,x=(1 .. 2),y=(-1 .. -0.5)); % unbounded expression (pole at y=0) bounds (x**3/y,x=(1 .. 2),y=(-1 .. 0.5)); on rounded; bounds(e**x,x=(1 .. 2)); bounds((1/2)**x,x=(1 .. 2)); off rounded; bounds(abs x,x=(1 .. 2)); bounds(abs x,x=(-3 .. 2)); bounds(abs x,x=(-3 .. -2)); bounds(sin x,x=(1 .. 2)); on rounded; bounds(sin x,x=(1 .. 2)); bounds(sin x,x=(1 .. 10)); bounds(sin x,x=(1001 .. 1002)); bounds(log x,x=(1 .. 10)); bounds(tan x,x=(1 .. 1.1)); bounds(cot x,x=(1 .. 1.1)); bounds(asin x,x=(-0.6 .. 0.6)); bounds(acos x,x=(-0.6 .. 0.6)); bounds(sqrt(x),x=(1 .. 1.1)); bounds(x**(7/3),x=(1 .. 1.1)); bounds(x**y,x=(1 .. 1.1),y=(2 .. 4)); off rounded; % MINIMA (steepest descent) % Rosenbrock function (minimum extremely hard to find). fktn := 100*(x1^2-x2)^2 + (1-x1)^2; num_min(fktn, x1=-1.2, x2=1, accuracy=6); % infinitely many local minima num_min(sin(x)+x/5, x=1); % bivariate polynomial num_min(x^4 + 3 x^2 * y + 5 y^2 + x + y, x=0.1, y=0.2); % ROOTS (non polynomial: damped Newton) num_solve (cos x -x, x=0,accuracy=6); % automatically randomized starting point num_solve (cos x -x,x, accuracy=6); % syntactical errors: forms do not evaluate to purely % numerical values num_solve (cos x -x, x=a); num_solve (cos x -a, x=0); num_solve (sin x = 0, x=3); % blows up: no real solution exists num_solve(sin x = 2, x=1); % solution in complex plane(only fond with complex starting point): on complex; num_solve(sin x = 2, x=1+i); off complex; % blows up for derivative 0 in starting point num_solve(x^2-1, x=0); % succeeds because of perturbed starting point num_solve(x^2-1, x=0.1); % bivariate equation system num_solve({sin x=cos y, x + y = 1},{x=1,y=2}); on evallhseqp; % So both sides of equation evaluate. sub(ws,{sin x=cos y, x + y = 1}); % INTEGRALS num_int( x**2,x=(1 .. 2),accuracy=3); % critical function: almost flat line with one % high narrow needle. needle := 1/(10**-4 + x**2); num_int(needle,x=(-1 .. 1),accuracy=3); % 312.16 num_int(exp(-x**2),x=(-10 .. 10),accuracy=3); % 1.772 num_int(exp(-x**2),x=(-10**2 .. 10**2)); % 1.7461 off roundbf; % cases with singularities num_int(1/sqrt x ,x=(0 .. 1)); % 1.999 num_int(1/sqrt abs x ,x=(-1 .. 1)); % 3.999 % simple multidimensional integrals num_int(x+y,x=(0 .. 1),y=(2 .. 3)); num_int(sin(x+y),x=(0 .. 1),y=(0 .. 1)); % APPROXIMATION %approximate sin x by a cubic polynomial num_fit(sin x,{1,x,x**2,x**3},x=for i:=0:20 collect 0.1*i); % approximate x**2 by a harmonic series in the interval [0,1] num_fit(x**2,1 . for i:=1:5 join {sin(i*x), cos(i*x)}, x=for i:=0:10 collect i/10); % approximate a set of points by a polynomial pts:=for i:=1 step 0.1 until 3 collect i$ vals:=for each p in pts collect (p+2)**3$ num_fit(vals,{1,x,x**2,x**3},x=pts); first ws - (x+2)**3; % ODE SOLUTION (Runge-Kutta) depend(y,x); % approximate y=y(x) with df(y,x)=2y in interval [0 : 5] num_odesolve(df(y,x)=y,y=2,x=(0 .. 5),iterations=20); % same with negative direction num_odesolve(df(y,x)=y,y=2,x=(0 .. -5),iterations=20); % giving a nice picture when plotted num_odesolve(df(y,x)=1- x*y**2 ,y=0,x=(0 .. 4),iterations=20); end;