Artifact 0bde8591ff3cc24f3bfb643d1c94ad30241c7d6bd91da8a7d817a4a9d526bf8e:
- Executable file
r37/doc/manual2/laplace.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2789) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/laplace.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2789) [annotate] [blame] [check-ins using]
\chapter[LAPLACE: Laplace transforms etc.]% {LAPLACE: Laplace and inverse Laplace transforms} \label{LAPLACE} \typeout{{LAPLACE: Laplace and inverse Laplace transforms}} {\footnotesize \begin{center} C. Kazasov, M. Spiridonova, V. Tomov \\ Sofia, Bulgaria %%\\[0.05in] %%e--mail: \end{center} } \ttindex{LAPLACE} The LAPLACE package provides both Laplace Transforms and Inverse Laplace Transforms, with the two operators \noindent{\tt LAPLACE(exp, s\_var, t\_var)}\ttindex{LAPLACE} \\ {\tt INVLAP(exp, s\_var, t\_var)}\ttindex{INVLAP} The action is to transform the expression from the {\tt s\_var} or source variable into the {\tt t\_var} or target variable. If {\tt t\_var} is omitted, the package uses an internal variable {\tt lp!\&} or {\tt il!\&} respectively. Three switches control the transformations. If {\tt lmon}\ttindex{lpon} is on then sine, cosine, hyperbolic sine and hyperbolic cosines are converted by LAPLACE into exponentials. If {\tt lhyp} is on then exponential functions are converted into hyperbolic form. The last switch {\tt ltrig}\ttindex{ltrig} has the same effect except it uses trigonometric functions. The system can be extended by adding Laplace transformation rules for single functions by rules or rule sets. In such a rule the source variable {\bf must} be free, the target variable {\bf must} be {\tt il!\&} for LAPLACE and {\tt lp!\&} for INVLAP, with the third parameter omitted. Also rules for transforming derivatives are entered in such a form. For example \begin{verbatim} let {laplace(log(~x),x) => -log(gam * il!&)/il!&, invlap(log(gam * ~x)/x,x) => -log(lp!&)}; operator f; let { laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)), laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) - for i:=n-1 step -1 until 0 sum sub(x=0, df(f(x),x,n-1-i)) * il!&**i when fixp n, laplace(f(~x),x) = f(il!&) }; \end{verbatim} The LAPLACE system knows about the functions {\tt DELTA} and {\tt GAMMA}, and used the operator {\tt ONE} for the unit step function and {\tt INTL} stands for the parameterised integral function, for instance {\tt intl(2*y**2,y,0,x)} stands for $\int^x_0 2 y^2 dx$. \begin{verbatim} load_package laplace; laplace(sin(17*x),x,p); 17 ---------- 2 p + 289 on lmon; laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p); 1 a*k - ---*sqrt(pi)*e 4 ---------------------- k*p e *sqrt( - a + p) invlap(c/((p-a)*(p-b)), p, t); a*t b*t c*(e - e ) ----------------- a - b invlap(p**(-7/3), p, t); 1/3 t *t ------------ 7 gamma(---) 3 \end{verbatim}