Artifact 0439045378ef6cc76311a56178a5750728ae7ca0fec126580caf89fadfcc501b:
- Executable file
r37/packages/solve/rsolve.txt
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1340) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/solve/rsolve.txt
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1340) [annotate] [blame] [check-ins using]
Rational and integer zeros of a univariate polynomial using fast modular methods. Author: F.J.Wright@Maths.QMW.ac.uk Version 1.05, 2 Oct 1994 The operators r_solve and i_solve take a single univariate polynomial (or polynomial equation) as argument, and optionally the variable as second argument, and return respectively the sets of rational and integer zeros. Any denominator is completely ignored! See the test/demo file rsolve.tst for examples. Default output format is the same as used by solve (including respecting the multiplicities switch), but optional arguments allow other output formats (see the source file rsolve.red for details). Solutions of degenerate equations are expressed by r_solve and i_solve using the operators ARBRAT (which is new) and ARBINT respectively. Computing only the integer zeros is slightly more efficient than extracting them from the rational zeros. This algorithm appears to be faster than solve by a factor that depends on the example, but typically up to about 2, and gives more convenient output if only integer or rational zeros are required. The algorithm used is that described by R. Loos (1983): Computing rational zeros of integral polynomials by p-adic expansion. SIAM J. Computing. 12, 286--293. The switch TRSOLVE turns on tracing of the algorithm.