Artifact 02644d4466da56becb4fe78164803ad14441879eb50ecf93907593232fe321a7:
- Executable file
r37/packages/cali/cali.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 17686) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/cali/cali.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 17686) [annotate] [blame] [check-ins using]
% Author H.-G. Graebe | Univ. Leipzig | Version 28.6.1995 % graebe@informatik.uni-leipzig.de COMMENT This is an example session demonstrating and testing the facilities offered by the commutative algebra package CALI. END COMMENT; algebraic; on echo; off nat; % To make it easier to compare differing output. showtime; comment #################################### ### ### ### Introductory Examples ### ### ### #################################### end comment; % Example 1 : Generating ideals of affine and projective points. vars:={t,x,y,z}; setring(vars,degreeorder vars,revlex); mm:=mat((1,1,1,1),(3,2,3,1),(2,1,3,2)); % The ideal with zero set at the point in A^4 with coordinates % equal to the row vectors of mm : setideal(m1,affine_points mm); % All parameters are as they should be : dim m1; degree m1; groebfactor m1; resolve m1$ bettinumbers m1; % The ideal with zero set at the point in P^3 with homogeneous % coordinates equal to the row vectors of mm : setideal(m2,proj_points mm); % All parameters as they should be ? dim m2; degree m2; groebfactor m2; % It seems to be prime ? isprime m2; % Not, of course, but it is known to be unmixed. % Hence we can use easyprimarydecomposition m2; % Example 2 : % The affine monomial curve with generic point (t^7,t^9,t^10). setideal(m,affine_monomial_curve({7,9,10},{x,y,z})); % The base ring was changed as side effect : getring(); vars:=first getring m; % Some advanced commutative algebra : % The analytic spread of m. analytic_spread m; % The Rees ring Rees_R(vars) over R=S/m. rees:=blowup(m,vars,{u,v,w}); % It is multihomogeneous wrt. the degree vectors, constructed during % blow up. Lets compute weighted Hilbert series : setideal(rees,rees)$ weights:=second getring(); weightedhilbertseries(gbasis rees,weights); % gr_R(vars), the associated graded ring of the irrelevant ideal % over R. The short way. interreduce sub(x=0,y=0,z=0,rees); % The long (and more general) way. Gives the result in another % embedding. % Restore the base ring, since it was changed by blowup as a side % effect. setring getring m$ assgrad(m,vars,{u,v,w}); % Comparing the Rees algebra and the symmetric algebra of M : setring getring m$ setideal(rees,blowup({},m,{a,b,c})); % Lets test weighted Hilbert series once more : weights:=second getring(); weightedhilbertseries(gbasis rees,weights); % The symmetric algebra : setring getring m$ setideal(sym,sym(m,{a,b,c})); modequalp(rees,sym); % Symbolic powers : setring getring m$ setideal(m2,idealpower(m,2)); % Let's compute a second symbolic power : setideal(m3,symbolic_power(m,2)); % It is different from the ordinary second power. % Hence m2 has a trivial component. modequalp(m2,m3); % Test x for non zero divisor property : nzdp(x,m2); nzdp(x,m3); % Here is the primary decomposition : pd:=primarydecomposition m2; % Compare the result with m2 : setideal(m4,matintersect(first first pd, first second pd)); modequalp(m2,m4); % Compare the result with m3 : setideal(m4,first first pd)$ modequalp(m3,m4); % The trivial component can also be removed with a stable % quotient computation : setideal(m5,matstabquot(m2,vars))$ modequalp(m3,m5); % Example 3 : The Macaulay curve. setideal(m,proj_monomial_curve({0,1,3,4},{w,x,y,z})); vars:=first getring(); gbasis m; % Test whether m is prime : isprime m; % A resolution of m : resolve m; % m has depth = 1 as can be seen from the gradedbettinumbers m; % Another way to see the non perfectness of m : hilbertseries m; % Just a third approach. Divide out a parameter system : ps:=for i:=1:2 collect random_linear_form(vars,1000); setideal(m1,matsum(m,ps))$ % dim should be zero and degree > degree m = 4. % A Gbasis for m1 is computed automatically. dim m1; degree m1; % The projections of m on the coord. hyperplanes. for each x in vars collect eliminate(m,{x}); % Example 4 : Two submodules of S^4. % Get the stored result of the earlier computation. r:=resolve m$ % See whether cali!=degrees contains a relict from earlier % computations. getdegrees(); % Introduce the 2nd and 3rd syzygy module as new modules. % Both are submodules in S^4. setmodule(m1,second r)$ setmodule(m2,third r)$ % The second is already a gbasis. setgbasis m2; getleadterms m1; getleadterms m2; % Since rk(F/M)=rk(F/in(M)), they have ranks 1 resp. 3. dim m1; indepvarsets m1; % Its intersection is zero : matintersect(m1,m2); % Its sum : setmodule(m3,matsum(m1,m2)); dim m3; % Hence it has a nontrivial annihilator : annihilator m3; % One can compute isolated primes and primary decomposition also for % modules. Let's do it, although being trivial here: isolatedprimes m3; primarydecomposition m3; % To get a meaningful Hilbert series make m1 homogeneous : setdegrees {1,x,x,x}; % Reevaluate m1 with the new column degrees. setmodule(m1,m1)$ hilbertseries m1; % Example 5 : From the MACAULAY manual (D.Bayer, M.Stillman). % An elliptic curve on the Veronese in P^5. rvars:={x,y,z}$ svars:={a,b,c,d,e,f}$ r:=setring(rvars,degreeorder rvars,revlex)$ s:=setring(svars,{for each x in svars collect 2},revlex)$ map:={s,r,{a=x^2,b=x*y,c=x*z,d=y^2,e=y*z,f=z^2}}; preimage({y^2z-x^3-x*z^2},map); % Example 6 : The preimage under a rational map. r:=setring({x,y},{},lex)$ s:=setring({t},{},lex)$ map:={r,s,{x=2t/(t^2+1),y=(t^2-1)/(t^2+1)}}; % The preimage of (0) is the equation of the circle : ratpreimage({},map); % The preimage of the point (t=3/2) : ratpreimage({2t-3},map); % Example 7 : A zerodimensional ideal. setring({x,y,z},{},lex)$ setideal(n,{x**2 + y + z - 3,x + y**2 + z - 3,x + y + z**2 - 3}); % The groebner algorithm with factorization : groebfactor n; % Change the term order and reevaluate n : setring({x,y,z},{{1,1,1}},revlex)$ setideal(n,n); % its primes : zeroprimes n; % a vector space basis of S/n : getkbase n; % Example 8 : A modular computation. Since REDUCE has no multivariate % factorizer, factorprimes has to be turned off ! on modular$ off factorprimes$ setmod 181; setideal(n1,n); zeroprimes n1; setmod 7; setideal(n1,n); zeroprimes n1; % Hence some of the primes glue together mod 7. zeroprimarydecomposition n1; off modular$ on factorprimes$ % Example 9 : Independent sets once more. n:=10$ vars:=for i:=1:(2*n) collect mkid(x,i)$ setring(vars,{},lex)$ setideal(m,for j:=0:n collect for i:=(j+1):(j+n) product mkid(x,i)); setgbasis m$ indepvarsets m; dim m; degree m; comment #################################### ### ### ### Local Standard Bases ### ### ### #################################### end comment; % Example 10 : An example from [ Alonso, Mora, Raimondo ] vars := {z,x,y}$ r:=setring(vars,{},lex)$ setideal(m,{x^3+(x^2-y^2)*z+z^4,y^3+(x^2-y^2)*z-z^4}); dim m; degree m; % 2 = codim m is the codimension of the curve m. The defining % equations of the singular locus with their nilpotent structure : singular_locus(m,2); groebfactor ws; % Hence this curve has two singular points : % (x=y=z=0) and (y=-x=256/81,z=64/27) % Let's find the brances of the curve through the origin. % The first critical tropism is (-1,-1,-1). off noetherian$ setring(vars,{{-1,-1,-1}},lex)$ setideal(m,m); % Let's first test two different approaches, not fully % integrated into the algebraic interface : setideal(m1,homstbasis m); setideal(m2,lazystbasis m); setgbasis m1$ setgbasis m2$ modequalp(m1,m2); gbasis m; modequalp(m,m1); dim m; degree m; % Find the tangent directions not in z-direction : tangentcone m; setideal(n,sub(z=1,ws)); setring r$ on noetherian$ setideal(n,n)$ degree n; % The points of n outside the origin. matstabquot(n,{x,y}); % Hence there are two branches x=z'*(a-3+x'),y=z'*(a+y'),z=z' % with the algebraic number a : a^2-3a+3=0 % and the new equations for (z',x',y') : setrules {a^2=>3a-3}; sub(x=z*(a-3+x),y=z*(a+y),m); setideal(m1,matqquot(ws,z)); % This defines a loc. smooth system at the origin, since the % jacobian at the origin of the gbasis is nonsingular : off noetherian$ setring getring m; setideal(m1,m1); gbasis m1; % clear the rules previously set. setrules {}; % Example 11 : The standard basis of another example. % Comparing different approaches. vars:={x,y}$ setring(vars,localorder vars,lex); ff:=x^5+y^11+(x+x^3)*y^9; setideal(p1,mat2list matjac({ff},vars)); gbasis p1; gbtestversion 2$ setideal(p2,p1); gbasis p2; gbtestversion 3$ setideal(p3,p1); gbasis p3; gbtestversion 1$ modequalp(p1,p2); modequalp(p1,p3); dim p1; degree p1; % Example 12 : A local intersection wrt. a non inflimited term order. setring({x,y,z},{},revlex); m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2}); % Delete polynomial units post factum : deleteunits ws; % Detecting polynomial units early : on detectunits; m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2}); off detectunits; comment #################################### ### ### ### More Advanced Computations ### ### ### #################################### end comment; % Return to a noetherian term order: vars:={x,y,z}$ setring(vars,degreeorder vars,revlex); on noetherian; % Example 13 : Use of "mod". % Polynomials modulo ideals : setideal(m,{2x^2+y+5,3y^2+z+7,7z^2+x+1}); x^2*y^2*z^2 mod m; % Lists of polynomials modulo ideals : {x^3,y^3,z^3} mod gbasis m; % Matrices modulo modules : mm:=mat((x^4,y^4,z^4)); mm1:=tp<< ideal2mat m>>; mm mod mm1; % Example 14 : Powersums through elementary symmetric functions. vars:={a,b,c,d,e1,e2,e3,e4}$ setring(vars,{},lex)$ m:=interreduce {a+b+c+d-e1, a*b+a*c+a*d+b*c+b*d+c*d-e2, a*b*c+a*b*d+a*c*d+b*c*d-e3, a*b*c*d-e4}; for n:=1:5 collect a^n+b^n+c^n+d^n mod m; % Example 15 : The setrules mechanism. setring({x,y,z},{},lex)$ setrules {aa^3=>aa+1}; setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa}); gbasis m; % Clear the rules previously set. setrules {}; % Example 16 : The same example with advanced coefficient domains. load_package arnum; defpoly aa^3-aa-1; setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa}); gbasis m; % The following needs some more time since factorization of % arnum's is not so easy : groebfactor m; off arnum; off rational; comment #################################### ### ### ### Using Advanced Scripts in ### ### a Complex Example ### ### ### #################################### end comment; % Example 17 : The square of the 2-minors of a symmetric 3x3-matrix. vars:=for i:=1:6 collect mkid(x,i); setring(vars,degreeorder vars,revlex); % Generating the ideal : mm:=mat((x1,x2,x3),(x2,x4,x5),(x3,x5,x6)); m:=ideal_of_minors(mm,2); setideal(n,idealpower(m,2)); % The ideal itself : gbasis n; length n; dim n; degree n; % Its radical. radical n; % Its unmixed radical. unmixedradical n; % Its equidimensional hull : n1:=eqhull n; length n1; setideal(n1,n1)$ submodulep(n,n1); submodulep(n1,n); % Hence there is an embedded component. Let's find it making % an excursion to symbolic mode. Of course, this can be done % also algebraically. symbolic; n:=get('n,'basis); % This needs even more time than the eqhull, of course. u:=primarydecomposition!* n; for each x in u collect easydim!* cadr x; for each x in u collect degree!* car x; % Hence the embedded component is a trivial one. Let's divide % it out by a stable ideal quotient calculation : algebraic; setideal(n2,matstabquot(n,vars)); modequalp(n1,n2); comment ######################################## ### ### ### Test Examples for New Features ### ### ### ######################################## end comment; % ==> Testing the different zerodimensional solver vars:={x,y,z}$ setring(vars,degreeorder vars,revlex); setideal(m,{x^3+y+z-3,y^3+x+z-3,z^3+x+y-3}); zerosolve1 m; zerosolve2 m; setring(vars,{},lex)$ setideal(m,m)$ m1:=gbasis m$ zerosolve m1; zerosolve1 m1; zerosolve2 m1; % ==> Testing groebfactor, extendedgroebfactor, extendedgroebfactor1 % Gerdt et al. : Seventh order KdV type equation. A1:=-2*L1**2+L1*L2+2*L1*L3-L2**2-7*L5+21*L6$ A2:=7*L7-2*L1*L4+3/7*L1**3$ B1:=L1*(5*L1-3*L2+L3)$ B2:=L1*(2*L6-4*L4)$ B3:=L1*L7/2$ P1:=L1*(L4-L5/2+L6)$ P2:=(2/7*L1**2-L4)*(-10*L1+5*L2-L3)$ P3:=(2/7*L1**2-L4)*(3*L4-L5+L6)$ P4:=A1*(-3*L1+2*L2)+21*A2$ P5:=A1*(2*L4-2*L5)+A2*(-45*L1+15*L2-3*L3)$ P6:=2*A1*L7+A2*(12*L4-3*L5+2*L6)$ P7:=B1*(2*L2-L1)+7*B2$ P8:=B1*L3+7*B2$ P9:=B1*(-2*L4-2*L5)+B2*(2*L2-8*L1)+84*B3$ P10:=B1*(8/3*L5+6*L6)+B2*(11*L1-17/3*L2+5/3*L3)-168*B3$ P11:=15*B1*L7+B2*(5*L4-2*L5)+B3*(-120*L1+30*L2-6*L3)$ P12:=-3*B1*L7+B2*(-L4/2+L5/4-L6/2)+B3*(24*L1-6*L2)$ P13:=3*B2*L7+B3*(40*L4-8*L5+4*L6)$ polys:={P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13}; vars:={L7,L6,L5,L4,L3,L2,L1}; clear a1,a2,b1,b2,b3$ off lexefgb; setring(vars,{},lex); % The factorized Groebner algorithm. groebfactor polys; % The extended Groebner factorizer, producing triangular sets. extendedgroebfactor polys; % The extended Groebner factorizer with subproblem removal check. extendedgroebfactor1 polys; % Gonnet's example (ACM SIGSAM Bulletin 17 (1983), 48 - 49) vars:={a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5}; polys:={a4*b4, a5*b1+b5+a4*b3+a3*b4, a2*b2,a5*b5, (a0+1+a4)*b2+a2*(b0+b1+b4)+c2, (a0+1+a4)*(b0+b1+b4)+(a3+a5)*b2+a2*(b3+b5)+c0+c1+c4, (a3+a5)*(b0+b1+b4)+(b3+b5)*(a0+1+a4)+c3+c5-1, (a3+a5)*(b3+b5), a5*(b3+b5)+b5*(a3+a5), b5*(a0+1+2*a4)+a5*(b0+b1+2*b4)+a3*b4+a4*b3+c5, a4*(b0+b1+2*b4)+a2*b5+a5*b2+(a0+1)*b4+c4, a2*b4+a4*b2, a4*b5+a5*b4, 2*a3*b3+a3*b5+a5*b3, c3+b3*(a0+2+a4)+a3*(b0+2*b1+b4)+b5+a5*b1, c1+(a0+2+a4)*b1+a2*b3+a3*b2+(b0+b4), a2*b1+b2, a5*b3+a3*b5, b4+a4*b1}; on lexefgb; % Switching back to the default. setring(vars,{},lex); groebfactor polys; extendedgroebfactor polys; extendedgroebfactor1 polys; % Schwarz' example s5 vars:=for k:=1:5 collect mkid(x,k); s5:={ x1**2+x1+2*x2*x5+2*x3*x4, 2*x1*x2+x2+2*x3*x5+x4**2, 2*x1*x3+x2**2+x3+2*x4*x5, 2*x1*x4+2*x2*x3+x4+x5**2, 2*x1*x5+2*x2*x4+x3**2+x5}; setring(vars,degreeorder vars,revlex); m:=groebfactor s5; % Recompute a list of problems with listgroebfactor for another term % order. setring(vars,{},lex); listgroebfactor m; % ==> Testing the linear algebra package % Find the ideal of points in affine and projective space. vars:=for k:=1:6 collect mkid(x,k); setring(vars,degreeorder vars,revlex); matrix mm(10,6); on rounded; for k:=1:6 do for l:=1:10 do mm(l,k):=floor(exp((k+l)/4)); off rounded; mm; setideal(u,affine_points mm); setgbasis u$ dim u; degree u; setideal(u,proj_points mm); setgbasis u$ dim u; degree u; % Change the term order to pure lex in dimension zero. % Test both approaches, with and without precomputed borderbasis. vars:=for k:=1:6 collect mkid(x,k); r1:=setring(vars,{},lex); r2:=setring(vars,degreeorder vars,revlex); setideal(m,{x1**2+x1+2*x2*x6+2*x3*x5+x4**2, 2*x1*x2+x2+2*x3*x6+2*x4*x5, 2*x1*x3+x2**2+x3+2*x4*x6+x5**2, 2*x1*x4+2*x2*x3+x4+2*x5*x6, 2*x1*x5+2*x2*x4+x3**2+x5+x6**2, 2*x1*x6+2*x2*x5+2*x3*x4+x6}); gbasis m; m1:=change_termorder(m,r1); setring r2$ m2:=change_termorder1(m,r1); setideal(m1,m1)$ setideal(m2,m2)$ setgbasis m1$ setgbasis m2$ modequalp(m1,m2); % ==> Different hilbert series driver setideal(m,proj_monomial_curve(w1:={0,2,5,9},{w,x,y,z})); weights:={{1,1,1,1},w1}; hftestversion 2; f1:=weightedhilbertseries(gbasis m,weights); sub(x=1,ws); % The ordinary Hilbert series. hftestversion 1; % The default. f2:=weightedhilbertseries(gbasis m,weights); sub(x=1,ws); f1-f2; % ==> Different primary decomposition approaches. The example is due % to Shimoyama Takeshi. CALI 2.2. produced auxiliary embedded % primes on it. vars:={dx,dy,x,y}; setring(vars,degreeorder vars,revlex); f3:={DY*( - X*DX + Y**2*DY - Y*DY),DX*(X**2*DX - X*DX - Y*DY)}$ primarydecomposition f3; showtime; end;