Artifact 006c956b27f3de2c4ef2cfdca495080b1e6e2de3b52fbaa2ebec0451a3d0c30b:
- Executable file
r36/xlog/LAPLACE.LOG
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 31499) [annotate] [blame] [check-ins using] [more...]
REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ... % Title: Examples of Laplace Transforms. % Author: L. Kazasov. % Date: 24 October 1988. order p; % Elementary functions with argument k*x, where x is object var. laplace(1,x,p); 1 --- p laplace(c,x,p); c --- p laplace(sin(k*x),x,p); k --------- 2 2 p + k laplace(sin(x/a),x,p); 1 ----------------- -1 2 2 a *(p *a + 1) laplace(sin(17*x),x,p); 17 ---------- 2 p + 289 laplace(sinh x,x,p); 1 -------- 2 p - 1 laplace(cosh(k*x),x,p); - p ------------ 2 2 - p + k laplace(x,x,p); 1 ---- 2 p laplace(x**3,x,p); 6 ---- 4 p off mcd; laplace(e**(c*x) + a**x, x, s); -1 -1 - ((log(a) - s) + (c - s) ) laplace(e**x - e**(a*x) + x**2, x, p); -3 -1 -1 2*p + ( - p + a) + (p - 1) laplace(one(k*t) + sin(a*t) - cos(b*t) - e**t, t, p); 2 2 -1 -1 2 2 -1 -1 - p*(p + b ) + p + (p + a ) *a - (p - 1) laplace(sqrt(x),x,p); - 3/2 1/2*sqrt(pi)*p laplace(x**(1/2),x,p); - 3/2 1/2*sqrt(pi)*p on mcd; laplace(x**(-1/2),x,p); sqrt(pi) ---------- sqrt(p) laplace(x**(5/2),x,p); 15*sqrt(pi) -------------- 3 8*sqrt(p)*p laplace(-1/4*x**2*c*sqrt(x), x, p); - 15*sqrt(pi)*c ------------------ 3 32*sqrt(p)*p % Elementary functions with argument k*x - tau, % where k>0, tau>=0, x is object var. laplace(cos(x-a),x,p); p --------------- p*a 2 e *(p + 1) laplace(one(k*x-tau),x,p); 1 -------------- (p*tau)/k e *p laplace(sinh(k*x-tau),x,p); - k ------------------------- (p*tau)/k 2 2 e *( - p + k ) laplace(sinh(k*x),x,p); - k ------------ 2 2 - p + k laplace((a*x-b)**c,x,p); c a *gamma(c + 1) ----------------- c (p*b)/a p *e *p % But ... off mcd; laplace((a*x-b)**2,x,p); -3 2 2 2 p *(p *b - 2*p*a*b + 2*a ) on mcd; laplace(sin(2*x-3),x,p); 2 ------------------- (3*p)/2 2 e *(p + 4) on lmon; laplace(sin(2*x-3),x,p); 2 ------------------- (3*p)/2 2 e *(p + 4) off lmon; off mcd; laplace(cosh(t-a) - sin(3*t-5), t, p); - p*a 2 -1 - 5/3*p 2 -1 e *p*(p - 1) - 3*e *(p + 9) on mcd; % More complicated examples - multiplication of functions. % We use here on lmon - a new switch that forces all % trigonometrical functions which depend on object var % to be represented as exponents. laplace(x*e**(a*x)*cos(k*x), x, p); 2 2 2 p - 2*p*a + a - k ------------------------------------------------------------------------- 4 3 2 2 2 2 3 2 4 2 2 4 p - 4*p *a + 6*p *a + 2*p *k - 4*p*a - 4*p*a*k + a + 2*a *k + k laplace(x**(1/2)*e**(a*x), x, p); - sqrt(pi) -------------------------- 2*sqrt(p - a)*( - p + a) laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p); a*k - sqrt(pi)*e -------------------- p*k 4*e *sqrt(p - a) laplace(x**(5/2)*e**(a*x), x, p); - 15*sqrt(pi) ---------------------------------------------- 3 2 2 3 8*sqrt(p - a)*( - p + 3*p *a - 3*p*a + a ) laplace((a*x-b)**c*e**(k*x)*const/2, x, p); 1 (b*k)/a c - ---*e *a *gamma(c + 1)*const 2 --------------------------------------- (p*b)/a c e *(p - k) *( - p + k) off mcd; laplace(x*e**(a*x)*sin(7*x)/c*3, x, p); 2 2 -2 -1 42*(p - 2*p*a + a + 49) *c *(p - a) on mcd; laplace(x*e**(a*x)*sin(k*x-tau), x, p); (a*tau)/k 2 2 2 (p*tau)/k (e *(p *tau - 2*p*a*tau + 2*p*k + a *tau - 2*a*k + k *tau))/(e 4 3 2 2 2 2 3 2 4 2 2 4 *(p - 4*p *a + 6*p *a + 2*p *k - 4*p*a - 4*p*a*k + a + 2*a *k + k )) % The next is unknown if lmon is off. laplace(sin(k*x)*cosh(k*x), x, p); *** Laplace for cosh(x*k)*sin(x*k) not known - try ON LMON laplace(cosh(k*x)*sin(k*x),x,p) laplace(x**(1/2)*sin(k*x), x, p); *** Laplace for sqrt(x)*sin(x*k) not known - try ON LMON laplace(sqrt(x)*sin(k*x),x,p) on lmon; % But now is OK. laplace(x**(1/2)*sin(a*x)*cos(a*b), x, p); (sqrt(pi)*cos(a*b) *( - sqrt(p - a*i)*p + sqrt(p + a*i)*p + sqrt(p - a*i)*a*i + sqrt(p + a*i)*a*i) 2 2 )/(4*sqrt(p + a*i)*sqrt(p - a*i)*i*(p + a )) laplace(sin(x)*cosh(x), x, p); 2 p + 2 -------- 4 p + 4 laplace(sin(k*x)*cosh(k*x), x, p); 2 2 k*(p + 2*k ) --------------- 4 4 p + 4*k % Off exp leads to very messy output in this case. % off exp; laplace(sin(k*x-t)*cosh(k*x-t), x, p); on exp; laplace(sin(k*x-t)*cosh(k*x-t), x, p); 2 2 k*(p + 2*k ) ---------------------- (p*t)/k 4 4 e *(p + 4*k ) laplace(cos(x)**2,x,p); 2 p + 2 ------------ 2 p*(p + 4) laplace(c*cos(k*x)**2,x,p); 2 2 c*(p + 2*k ) --------------- 2 2 p*(p + 4*k ) laplace(c*cos(2/3*x)**2, x, p); 2 8 c*(p + ---) 9 --------------- 2 16 p*(p + ----) 9 laplace(5*sinh(x)*e**(a*x)*x**3, x, p); 3 2 2 3 8 7 6 2 6 (120*(p - 3*p *a + 3*p*a + p - a - a))/(p - 8*p *a + 28*p *a - 4*p 5 3 5 4 4 4 2 4 3 5 3 3 - 56*p *a + 24*p *a + 70*p *a - 60*p *a + 6*p - 56*p *a + 80*p *a 3 2 6 2 4 2 2 2 7 5 - 24*p *a + 28*p *a - 60*p *a + 36*p *a - 4*p - 8*p*a + 24*p*a 3 8 6 4 2 - 24*p*a + 8*p*a + a - 4*a + 6*a - 4*a + 1) off exp; laplace(sin(2*x-3)*cosh(7*x-5), x, p); 2 11 2 11 11 p *e + p + 14*p*e - 14*p + 53*e + 53 ------------------------------------------------------------------------- (3*p + 1)/2 5 e *(p + 7 + 2*i)*(p + 7 - 2*i)*(p - 7 + 2*i)*(p - 7 - 2*i)*e on exp; laplace(sin(a*x-b)*cosh(c*x-d), x, p); *** Laplace for - 1/4*one((x*a - b)/a)*one((x*c - d)/c)*i**(-1) not known *** Laplace for 1/4*one((x*a - b)/a)*one((x*c - d)/c)*i**(-1) not known b*i a*x - b c*x - d 2*c*x 2*d - e *one(---------)*one(---------)*(e + e ) a c laplace(-------------------------------------------------------,x,p) a*i*x + c*x + d 4*e *i a*i*x a*x - b c*x - d 2*c*x 2*d e *one(---------)*one(---------)*(e + e ) a c + laplace(------------------------------------------------------,x,p) b*i + c*x + d 4*e *i % To solve this problem we must tell the program which one-function % is rightmost shifted. However, in REDUCE 3.4, this rule is still % not sufficient. for all x let one(x-b/a)*one(x-d/c) = one(x-b/a); laplace(sin(a*x-b)*cosh(c*x-d), x, p); (2*b*c)/a 2 2*d 2 (2*b*c)/a 2*d (2*b*c)/a 2 (a*(e *p + e *p + 2*e *p*c - 2*e *p*c + e *a (2*b*c)/a 2 2*d 2 2*d 2 (p*b + a*d + b*c)/a + e *c + e *a + e *c ))/(2*e 4 2 2 2 2 4 2 2 4 *(p + 2*p *a - 2*p *c + a + 2*a *c + c )) for all x clear one(x-b/a)*one(x-d/c) ; off lmon; % Floating point arithmetic. % laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p); on rounded; laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p); 117.461059957 ---------------------------------------------------- 1.78695652174*p 2 2.71828182846 *c*(p - 3.0*p + 7.54) laplace(x**2.156,x,p); gamma(3.156) -------------- 3.156 p laplace(x**(-0.5),x,p); gamma(0.5) ------------ 0.5 p off rounded; laplace(x**(-0.5),x,p); sqrt(pi) ---------- sqrt(p) on rounded; laplace(x*e**(2.35*x)*cos(7.42*x), x, p); 2 p - 4.7*p - 49.5339 --------------------------------------------------------- 4 3 2 p - 9.4*p + 143.2478*p - 569.44166*p + 3669.80312521 laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p); 3 2 (160664647206.0*p - 1.11661929808e+12*p + 1.14319162408e+13*p 10.0*p - 2.36681205089e+13)/(2.71828182846 4 3 2 *(p - 9.4*p + 143.2478*p - 569.44166*p + 3669.80312521)) % Higher precision works, but uses more memory. % precision 20; laplace(x**2.156,x,p); % laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p); off rounded; % Integral from 0 to x, where x is object var. % Syntax is intl(<expr>,<var>,0,<obj.var>). laplace(c1/c2*intl(2*y**2,y,0,x), x,p); 4*c1 ------- 4 p *c2 off mcd; laplace(intl(e**(2*y)*y**2+sqrt(y),y,0,x),x,p); -1 -3 - 3/2 p *(2*(p - 2) + 1/2*sqrt(pi)*p ) on mcd; laplace(-2/3*intl(1/2*y*e**(a*y)*sin(k*y),y,0,x), x, p); 2 2 k*( - ---*p + ---*a) 3 3 ----------------------------------------------------------------------------- 4 3 2 2 2 2 3 2 4 2 2 4 p*(p - 4*p *a + 6*p *a + 2*p *k - 4*p*a - 4*p*a*k + a + 2*a *k + k ) % Use of delta function and derivatives. laplace(-1/2*delta(x), x, p); 1 - --- 2 laplace(delta(x-tau), x, p); 1 -------- p*tau e laplace(c*cos(k*x)*delta(x),x,p); c laplace(e**(a*x)*delta(x), x, p); 1 laplace(c*x**2*delta(x), x, p); 0 laplace(-1/4*x**2*delta(x-pi), x, p); 1 2 - ---*pi 4 ------------ p*pi e laplace(cos(2*x-3)*delta(x-pi),x,p); cos(3) -------- p*pi e laplace(e**(-b*x)*delta(x-tau), x, p); 1 -------------- tau*(p + b) e on lmon; laplace(cos(2*x)*delta(x),x,p); 1 laplace(c*x**2*delta(x), x, p); 0 laplace(c*x**2*delta(x-pi), x, p); 2 c*pi ------- p*pi e laplace(cos(a*x-b)*delta(x-pi),x,p); cos(a*pi - b) --------------- p*pi e laplace(e**(-b*x)*delta(x-tau), x, p); 1 -------------- tau*(p + b) e off lmon; laplace(2/3*df(delta x,x),x,p); 2 ---*p 3 off exp; laplace(e**(a*x)*df(delta x,x,5), x, p); 5 - ( - p + a) on exp; laplace(df(delta(x-a),x), x, p); p ------ p*a e laplace(e**(k*x)*df(delta(x),x), x, p); p - k laplace(e**(k*x)*c*df(delta(x-tau),x,2), x, p); k*tau 2 2 e *c*(p - 2*p*k + k ) ---------------------------- p*tau e on lmon; laplace(e**(k*x)*sin(a*x)*df(delta(x-t),x,2),x,p); k*t 1 2*a*i*t 2 1 2 2*a*i*t 2*a*i*t (e *(---*e *p - ---*p - e *p*a*i - e *p*k - p*a*i + p*k 2 2 1 2*a*i*t 2 2*a*i*t 1 2*a*i*t 2 1 2 - ---*e *a + e *a*i*k + ---*e *k + ---*a + a*i*k 2 2 2 1 2 t*(p + a*i) - ---*k ))/(e *i) 2 off lmon; % But if tau is positive, Laplace transform is not defined. laplace(e**(a*x)*delta(x+tau), x, p); *** Laplace for delta(x + tau) not known - try ON LMON a*x laplace(e *delta(tau + x),x,p) laplace(2*c*df(delta(x+tau),x), x, p); *** Laplace for df(delta(x + tau),x) not known - try ON LMON laplace(2*df(delta(tau + x),x)*c,x,p) laplace(e**(k*x)*df(delta(x+tau),x,3), x, p); *** Laplace for df(delta(x + tau),x,3) not known - try ON LMON k*x laplace(e *df(delta(tau + x),x,3),x,p) % Adding new let rules for Laplace operator. Note the syntax. for all x let laplace(log(x),x) = -log(gam*il!&)/il!&; laplace(-log(x)*a/4, x, p); 1 ---*log(p*gam)*a 4 ------------------ p laplace(-log(x),x,p); log(p*gam) ------------ p laplace(a*log(x)*e**(k*x), x, p); log(gam*(p - k))*a -------------------- - p + k for all x clear laplace(log(x),x); operator f; for all x let laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - sub(x=0,f(x)); for all x,n such that numberp n and fixp n let laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) - for i:=n-1 step -1 until 0 sum sub(x=0, df(f(x),x,n-1-i)) * il!&**i ; for all x let laplace(f(x),x) = f(il!&); laplace(1/2*a*df(-2/3*f(x)*c,x), x,p); 1 1 a*c*( - ---*p*f(p) + ---*f(0)) 3 3 laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p); 1 4 1 3 1 2 a*c*( - ---*p *f(p) + ---*p *f(0) + ---*p *sub(x=0,df(f(x),x)) 3 3 3 1 1 + ---*p*sub(x=0,df(f(x),x,2)) + ---*sub(x=0,df(f(x),x,3))) 3 3 laplace(1/2*a*e**(k*x)*df(-2/3*f(x)*c,x,2), x,p); 1 2 2 1 1 2 a*c*( - ---*p *f(p - k) + ---*p*f(p - k)*k + ---*p*f(0) - ---*f(p - k)*k 3 3 3 3 1 1 - ---*f(0)*k + ---*sub(x=0,df(f(x),x))) 3 3 clear f; % Or if the boundary conditions are known and assume that % f(i,0)=sub(x=0,df(f(x),x,i)) the above may be overwritten as: operator f; for all x let laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - f(0,0); for all x,n such that numberp n and fixp n let laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) - for i:=n-1 step -1 until 0 sum il!&**i * f(n-1-i,0); for all x let laplace(f(x),x) = f(il!&); let f(0,0)=0, f(1,0)=1, f(2,0)=2, f(3,0)=3; laplace(1/2*a*df(-2/3*f(x)*c,x), x,p); 1 - ---*p*f(p)*a*c 3 laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p); 1 4 1 2 2 a*c*( - ---*p *f(p) + ---*p + ---*p + 1) 3 3 3 clear f(0,0), f(1,0), f(2,0), f(3,0); clear f; % Very complicated examples. on lmon; laplace(sin(a*x-b)**2, x, p); (p*b)/a 2 (p*b)/a 2 (p*b)/a 2 - e *p + e *p + 4*e *a ---------------------------------------------- (2*p*b)/a 2 2 2*e *p*(p + 4*a ) off mcd; laplace(x**3*(sin x)**4*e**(5*k*x)*c/2, x,p); -4 -4 -4 c*(3/16*( - p + 4*i + 5*k) + 3/16*(p + 4*i - 5*k) - 3/4*( - p + 2*i + 5*k) -4 -4 - 3/4*(p + 2*i - 5*k) + 9/8*( - p + 5*k) ) a:=(sin x)**4*e**(5*k*x)*c/2; 5*k*x 4 a := 1/2*e *sin(x) *c laplace(x**3*a,x,p); -4 -4 -4 c*(3/16*( - p + 4*i + 5*k) + 3/16*(p + 4*i - 5*k) - 3/4*( - p + 2*i + 5*k) -4 -4 - 3/4*(p + 2*i - 5*k) + 9/8*( - p + 5*k) ) clear a; on mcd; % And so on, but is very time consuming. % laplace(e**(k*x)*x**2*sin(a*x-b)**2, x, p); % for all x let one(a*x-b)*one(c*x-d) = one(c*x-d); % laplace(x*e**(-2*x)*cos(a*x-b)*sinh(c*x-d), x, p); % for all x clear one(a*x-b)*one(c*x-d) ; % laplace(x*e**(c*x)*sin(k*x)**3*cosh(x)**2*cos(a*x), x, p); off lmon; % Error messages. laplace(sin(-x),x,p); ***** Laplace induces one( - x) which is not allowed laplace( - sin(x),x,p) on lmon; laplace(sin(-a*x), x, p); ***** Laplace induces one( - x*a) which is not allowed laplace( - sin(a*x),x,p) off lmon; laplace(e**(k*x**2), x, p); *** Laplace for e**(x**2*k) not known - try ON LMON 2 k*x laplace(e ,x,p) laplace(sin(-a*x+b)*cos(c*x+d), x, p); *** Laplace for - cos(x*c + d)*sin(x*a - b) not known - try ON LMON laplace( - cos(c*x + d)*sin(a*x - b),x,p) laplace(x**(-5/2),x,p); *** Laplace for x**( - 5/2) not known - try ON LMON 1 laplace(------------,x,p) 2 sqrt(x)*x % With int arg, can't be shifted. laplace(intl(y*e**(a*y)*sin(k*y-tau),y,0,x), x, p); *** Laplace for sin(x*k - tau) not allowed a*x laplace(e *sin(k*x - tau)*x,x,p) ------------------------------------ p laplace(cosh(x**2), x, p); *** Laplace for cosh(x**2) not known - try ON LMON 2 laplace(cosh(x ),x,p) laplace(3*x/(x**2-5*x+6),x,p); *** Laplace for (x**2 - 5*x + 6)**(-1) not known - try ON LMON 3*x laplace(--------------,x,p) 2 x - 5*x + 6 laplace(1/sin(x),x,p); *** Laplace for sin(x)**(-1) not known - try ON LMON 1 laplace(--------,x,p) sin(x) % But ... laplace(x/sin(-3*a**2),x,p); - 1 -------------- 2 2 p *sin(3*a ) % Severe errors. % laplace(sin x,x,cos y); % laplace(sin x,x,y+1); % laplace(sin(x+1),x+1,p); Comment Examples of Inverse Laplace transformations; symbolic(ordl!* := nil); % To nullify previous order declarations. order t; % Elementary ratio of polynomials. invlap(1/p, p, t); 1 invlap(1/p**3, p, t); 2 t ---- 2 invlap(1/(p-a), p, t); t*a e invlap(1/(2*p-a),p,t); (t*a)/2 e ---------- 2 invlap(1/(p/2-a),p,t); 2*t*a 2*e invlap(e**(-k*p)/(p-a), p, t); t*a e ------ a*k e invlap(b**(-k*p)/(p-a), p, t); t*a e ------ a*k b invlap(1/(p-a)**3, p, t); t*a 2 e *t --------- 2 invlap(1/(c*p-a)**3, p, t); (t*a)/c 2 e *t ------------- 3 2*c invlap(1/(p/c-a)**3, p, t); t*a*c 2 3 e *t *c -------------- 2 invlap((c*p-a)**(-1)/(c*p-a)**2, p, t); (t*a)/c 2 e *t ------------- 3 2*c invlap(c/((p/c-a)**2*(p-a*c)), p, t); t*a*c 2 3 e *t *c -------------- 2 invlap(1/(p*(p-a)), p, t); t*a e - 1 ---------- a invlap(c/((p-a)*(p-b)), p, t); t*a t*b c*(e - e ) ----------------- a - b invlap(p/((p-a)*(p-b)), p, t); t*a t*b e *a - e *b ----------------- a - b off mcd; invlap((p+d)/(p*(p-a)), p, t); t*a -1 t*a -1 e *a *d + e - a *d invlap((p+d)/((p-a)*(p-b)), p, t); -1 t*a t*a t*b t*b (a - b) *(e *a + e *d - e *b - e *d) invlap(1/(e**(k*p)*p*(p+1)), p, t); - t + k - e + one(t - k) on mcd; off exp; invlap(c/(p*(p+a)**2), p, t); t*a - (a*t + 1 - e )*c ----------------------- t*a 2 e *a on exp; invlap(1, p, t); delta(t) invlap(c1*p/c2, p, t); df(delta(t),t)*c1 ------------------- c2 invlap(p/(p-a), p, t); t*a delta(t) + e *a invlap(c*p**2, p, t); df(delta(t),t,2)*c invlap(p**2*e**(-a*p)*c, p, t); sub(t=t - a,df(delta(t),t,2))*c off mcd; invlap(e**(-a*p)*(1/p**2-p/(p-1))+c/p, p, t); t - a t - delta(t - a) - e - a + c on mcd; invlap(a*p**2-2*p+1, p, x); delta(x) + df(delta(x),x,2)*a - 2*df(delta(x),x) % P to non-integer power in denominator - i.e. gamma-function case. invlap(1/sqrt(p), p, t); 1 ------------------ sqrt(t)*sqrt(pi) invlap(1/sqrt(p-a), p, t); t*a e ------------------ sqrt(t)*sqrt(pi) invlap(c/(p*sqrt(p)), p, t); 2*sqrt(t)*c ------------- sqrt(pi) invlap(c*sqrt(p)/p**2, p, t); 2*sqrt(t)*c ------------- sqrt(pi) invlap((p-a)**(-3/2), p, t); t*a 2*sqrt(t)*e ---------------- sqrt(pi) invlap(sqrt(p-a)*c/(p-a)**2, p, t); t*a 2*sqrt(t)*e *c ------------------ sqrt(pi) invlap(1/((p-a)*b*sqrt(p-a)), p, t); t*a 2*sqrt(t)*e ---------------- sqrt(pi)*b invlap((p/(c1-3)-a)**(-3/2), p, t); t*a*c1 2*sqrt(t)*e *sqrt(c1 - 3)*(c1 - 3) ----------------------------------------- 3*t*a sqrt(pi)*e invlap(1/((p/(c1-3)-a)*b*sqrt(p/(c1-3)-a)), p, t); t*a*c1 2*sqrt(t)*e *sqrt(c1 - 3)*(c1 - 3) ----------------------------------------- 3*t*a sqrt(pi)*e *b invlap((p*2-a)**(-3/2), p, t); (t*a)/2 sqrt(t)*e ------------------ sqrt(pi)*sqrt(2) invlap(sqrt(2*p-a)*c/(p*2-a)**2, p, t); (t*a)/2 sqrt(t)*e *sqrt(2)*c ---------------------------- 2*sqrt(pi) invlap(c/p**(7/2), p, t); 2 8*sqrt(t)*t *c ---------------- 15*sqrt(pi) invlap(p**(-7/3), p, t); 1/3 t *t ------------ 7 gamma(---) 3 invlap(gamma(b)/p**b,p,t); b t ---- t invlap(c*gamma(b)*(p-a)**(-b),p,t); b t*a t *e *c ----------- t invlap(e**(-k*p)/sqrt(p-a), p, t); t*a e --------------------------- a*k sqrt(pi)*e *sqrt(t - k) % Images that give elementary object functions. % Use of new switches lmon, lhyp. invlap(k/(p**2+k**2), p, t); 2*t*i*k e - 1 -------------- t*i*k 2*e *i % This is made more readable by : on ltrig; invlap(k/(p**2+k**2), p, t); sin(t*k) invlap(p/(p**2+1), p, t); cos(t) invlap((p**2-a**2)/(p**2+a**2)**2, p, t); t*cos(t*a) invlap(p/(p**2+a**2)**2, p, t); t*sin(t*a) ------------ 2*a invlap((p-a)/((p-a)**2+b**2), p, t); t*a e *cos(t*b) off ltrig; on lhyp; invlap(s/(s**2-k**2), s, t); cosh(t*k) invlap(e**(-tau/k*p)*p/(p**2-k**2), p, t); cosh(t*k - tau) off lhyp; % But it is not always possible to convert expt. functions, e.g.: on lhyp; invlap(k/((p-a)**2-k**2), p, t); sinh(t*k)*(cosh(t*a) + sinh(t*a)) off lhyp; on ltrig; invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t); 2*t*i*k 2*i*tau e - e --------------------- i*(t*k + tau) 2*e *i off ltrig; % In such situations use the default switches: invlap(k/((p-a)**2-k**2), p, t); t*a 2*t*k e *(e - 1) ------------------- t*k 2*e % i.e. e**(a*t)*cosh(k*t). invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t); 2*t*i*k 2*i*tau e - e --------------------- i*(t*k + tau) 2*e *i % i.e. sin(k*t-tau). % More complicated examples. off exp,mcd; invlap((p+d)/(p**2*(p-a)), p, t); t*a -2 - ((d*t + 1)*a + d - e *(a + d))*a invlap(e**(-tau/k*p)*c/(p*(p-a)**2), p, t); -1 - (k *tau - t)*a -1 -1 -2 - (e *((k *tau - t)*a + 1) - one(t - k *tau))*a *c invlap(1/((p-a)*(p-b)*(p-c)), p, t); t*b 2 -1 t*c 2 -1 - (e *(a*b - a*c - b + b*c) - e *(a*b - a*c - b*c + c ) t*a 2 -1 - e *(a - a*b - a*c + b*c) ) invlap((p**2+g*p+d)/(p*(p-a)**2), p, t); t*a -2 -2 t*a -1 - (e *(a *d - 1) - a *d - e *(a + a *d + g)*t) on exp,mcd; invlap(k*c**(-b*p)/((p-a)**2+k**2), p, t); t*a 2*b*i*k 2*t*i*k e *( - c + e ) ------------------------------- t*i*k a*b + b*i*k 2*e *c *i on ltrig; invlap(c/(p**2*(p**2+a**2)), p, t); c*(t*a - sin(t*a)) -------------------- 3 a invlap(1/(p**2-p+1), p, t); t/2 sqrt(3)*t 2*e *sin(-----------) 2 ------------------------- sqrt(3) invlap(1/(p**2-p+1)**2, p, t); t/2 sqrt(3)*t sqrt(3)*t 2*e *( - 3*t*cos(-----------) + 2*sqrt(3)*sin(-----------)) 2 2 --------------------------------------------------------------- 9 invlap(2*a**2/(p*(p**2+4*a**2)), p, t); - cos(2*t*a) + 1 ------------------- 2 % This is (sin(a*t))**2 and you can get this by using the let rules : for all x let sin(2*x)=2*sin x*cos x, cos(2*x)=(cos x)**2-(sin x)**2, (cos x)**2 =1-(sin x)**2; invlap(2*a**2/(p*(p**2+4*a**2)), p, t); 2 sin(t*a) for all x clear sin(2*x),cos(2*x),cos(x)**2; off ltrig; on lhyp; invlap((p**2-2*a**2)/(p*(p**2-4*a**2)),p,t); cosh(2*t*a) + 1 ----------------- 2 off lhyp; % Analogously, the above is (cosh(a*t))**2. % Floating arithmetic. invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t); (33333*t)/10000 4*t 51000*( - e + e ) ------------------------------------ 6667 on rounded; invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t); 4.0*t 3.3333*t 7.64961751912*2.71828182846 - 7.64961751912*2.71828182846 invlap(1.5/sqrt(p-0.5), p, t); 0.5*t 1.5*2.71828182846 ------------------------ 0.5 t *gamma(0.5) invlap(2.75*p**2-0.5*p+e**(-0.9*p)/p, p, t); 2.75*df(delta(t),t,2) - 0.5*df(delta(t),t) + one(t - 0.9) invlap(1/(2.0*p-3.0)**3, p, t); 1.5*t 2 0.0625*2.71828182846 *t invlap(1/(2.0*p-3.0)**(3/2), p, t); 0.5 1.5*t 0.353553390593*t *2.71828182846 ---------------------------------------- gamma(1.5) invlap(1/(p**2-5.0*p+6), p, t); 3.0*t 2.0*t 2.71828182846 - 2.71828182846 off rounded; % Adding new let rules for the invlap operator. note the syntax: for all x let invlap(log(gam*x)/x,x) = -log(lp!&); invlap(-1/2*log(gam*p)/p, p, t); log(t) -------- 2 invlap(-e**(-a*p)*log(gam*p)/(c*p), p, t); log(t - a) ------------ c for all x clear invlap(1/x*log(gam*x),x); % Very complicated examples and use of factorizer. off exp,mcd; invlap(c**(-k*p)*(p**2+g*p+d)/(p**2*(p-a)**3), p, t); - (log(c)*k - t)*a -4 (e - 1)*(a*g + 3*d)*a - (log(c)*k - t)*a 2 -1 -2 + 1/2*e *( - t + log(c)*k) *(a *g + a *d + 1) - (log(c)*k - t)*a -3 + (e *(a*g + 2*d) + d)*(log(c)*k - t)*a on exp,mcd; invlap(1/(2*p**3-5*p**2+4*p-1), p, t); t t/2 t e *t + 2*e - 2*e on ltrig,lhyp; invlap(1/(p**4-a**4), p, t); - sin(t*a) + sinh(t*a) ------------------------- 3 2*a invlap(1/((b-3)*p**4-a**4*(2+b-5)), p, t); - sin(t*a) + sinh(t*a) ------------------------- 3 2*a *(b - 3) off ltrig,lhyp; % The next three examples are the same: invlap(c/(p**3/8-9*p**2/4+27/2*p-27)**2,p,t); 6*t 5 243*e *t *c --------------- 40 invlap(c/(p/2-3)**6,p,t); 6*t 5 8*e *t *c ------------- 15 off exp; a:=(p/2-3)**6; 6 (p - 6) a := ---------- 64 on exp; invlap(c/a, p, t); 6*t 5 8*e *t *c ------------- 15 clear a; % The following two examples are the same : invlap(c/(p**4+2*p**2+1)**2, p, t); 2*t*i 3 3 2*t*i 2 2 2*t*i 2*t*i (c*(e *t + t + 6*e *t *i - 6*t *i - 15*e *t - 15*t - 15*e *i t*i + 15*i))/(96*e ) invlap(c/((p-i)**4*(p+i)**4),p,t); 2*t*i 3 3 2*t*i 2 2 2*t*i 2*t*i (c*(e *t + t + 6*e *t *i - 6*t *i - 15*e *t - 15*t - 15*e *i t*i + 15*i))/(96*e ) % The following three examples are the same : invlap(e**(-k*p)/(2*p-3)**6, p, t); (3*t)/2 5 4 3 2 2 3 4 5 e *(t - 5*t *k + 10*t *k - 10*t *k + 5*t*k - k ) ------------------------------------------------------------ (3*k)/2 7680*e invlap(e**(-k*p)/(4*p**2-12*p+9)**3, p, t); (3*t)/2 5 4 3 2 2 3 4 5 e *(t - 5*t *k + 10*t *k - 10*t *k + 5*t*k - k ) ------------------------------------------------------------ (3*k)/2 7680*e invlap(e**(-k*p)/(8*p**3-36*p**2+54*p-27)**2, p, t); (3*t)/2 5 4 3 2 2 3 4 5 e *(t - 5*t *k + 10*t *k - 10*t *k + 5*t*k - k ) ------------------------------------------------------------ (3*k)/2 7680*e % Error messages. invlap(e**(a*p)/p, p, t); *** Invlap for e**(p*a)/p not known a*p e invlap(------,p,t) p invlap(c*p*sqrt(p), p, t); *** Invlap for sqrt(p)*p not known invlap(sqrt(p)*c*p,p,t) invlap(sin(p), p, t); *** Invlap for sin(p) not known invlap(sin(p),p,t) invlap(1/(a*p**3+b*p**2+c*p+d),p,t); *** Invlap for (p**3*a + p**2*b + p*c + d)**(-1) not known 1 invlap(-----------------------,p,t) 3 2 a*p + b*p + c*p + d invlap(1/(p**2-p*sin(p)+a**2),p,t); *** Invlap for (p**2 - p*sin(p) + a**2)**(-1) not known - 1 invlap(--------------------,p,t) 2 2 sin(p)*p - a - p on rounded; invlap(1/(p**3-1), p, t); *** Invlap for (p**3 - 1)**(-1) not known 1 invlap(--------,p,t) 3 p - 1 off rounded; % Severe errors: %invlap(1/(p**2+1), p+1, sin(t) ); %invlap(p/(p+1)**2, sin(p), t); end; (TIME: laplace 8570 8939)