c1ddb4c814 2021-03-01 1: % Introduction to Reduce
c1ddb4c814 2021-03-01 2: %
c1ddb4c814 2021-03-01 3: (x+y+z)^2;
c1ddb4c814 2021-03-01 4: for i:= 1:40 product i;
c1ddb4c814 2021-03-01 5: factorial 40;
c1ddb4c814 2021-03-01 6: u := (x+y+z)^2;
c1ddb4c814 2021-03-01 7: df(ws,x);
c1ddb4c814 2021-03-01 8: int(ws,y);
c1ddb4c814 2021-03-01 9: matrix m(2,2);
c1ddb4c814 2021-03-01 10: m := mat((a,b),(c,d));
c1ddb4c814 2021-03-01 11: %
c1ddb4c814 2021-03-01 12: (sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
c1ddb4c814 2021-03-01 13: where cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
c1ddb4c814 2021-03-01 14: cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
c1ddb4c814 2021-03-01 15: sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2;
c1ddb4c814 2021-03-01 16: %
c1ddb4c814 2021-03-01 17: on fort;
c1ddb4c814 2021-03-01 18: df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);
c1ddb4c814 2021-03-01 19: off fort;
c1ddb4c814 2021-03-01 20: %