ADDED mttroot/mtt/lib/control/PPP/ppp_lin_run.m Index: mttroot/mtt/lib/control/PPP/ppp_lin_run.m ================================================================== --- /dev/null +++ mttroot/mtt/lib/control/PPP/ppp_lin_run.m @@ -0,0 +1,176 @@ +function [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o) + + ## usage: [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o); + ## + ## + ## Linear closed-loop PPP of lego system (and simulation) + ## + ## Name: Name of system (in mtt terms) + ## Simulate = 0: real thing + ## Simulate = 1: simulate + ## Control = 0: step test + ## Control = 1: PPP open-loop + ## Control = 2: PPP closed-loop + ## w is the (constant) setpoint + ## par_control and par_observer are structures containing parameters + ## for the observer and controller + + ##Defaults + if nargin<1 # Default name to dir name + names = split(pwd,"/"); + [n_name,m_name] = size(names); + Name = deblank(names(n_name,:)); + endif + + if nargin<2 + Simulate = 1; + endif + + if nargin<3 + ControlType = 2; + endif + + if nargin<4 + w = 1; + endif + + if nargin<5 + p_c.N = 10; + endif + + if nargin<6 + p_o.sigma = 0.001; + endif + + if !struct_contains(p_c,"N") + p_c.N = 10; # Number of small samples + endif + + if !struct_contains(p_c,"A_w") + p_c.A_w = 0; + endif + + if !struct_contains(p_c,"A_u") + p_c.N_u = 3; + a_u = 2.0; + p_c.A_u = ppp_aug(p_c.A_w,laguerre_matrix(p_c.N_u-1,a_u)); + endif + + [p_c.N_u,M_u] = size(p_c.A_u); + if (p_c.N_u<>M_u) + error("A_u must be square"); + endif + + ## System + sys = mtt2sys(Name); # Create system + [A,B,C,D] = sys2ss(sys); # SS form + [n_x, n_u, n_y] = abcddim(A,B,C,D) + ol_poles = eig(A) + + ## Initialise + x_0 = zeros(n_x,1); + x_est = x_0; + + ## Initilise simulation state + x = x_0; +##x(2) = 0.2; + # x(2) = y_0(1); + # x(4) = y_0(2); + + if ControlType==0 # Step input + N = 50; # Number of small samples + I = 1; # Number of large samples + K_w = zeros(p_c.N_u,n_y); + K_w(1,1) = 1; + K_w(2,1) = -1; + K_x = zeros(p_c.N_u,n_x); + U = K_w*w; # Initial control U + else # PPP control + I = ceil(50/p_c.N); # Number of large samples + tau = [10:0.1:11]*(2/a_u); # Time horizons + [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design + U = K_w*w # Initial control U + + ## Checks + cl_poles = eig(A - B*k_x) + endif + + ## Sample times + dt = 0.1; + delta = p_c.N*dt; + + ## Observer design + Ad = expm(A*delta); # Discrete-time transition matrix + if (ControlType==2) + G = eye(n_x); # State noise gain + sigma_x = eye(n_x); # State noise variance + Sigma = p_o.sigma*eye(n_y); # Measurement noise variance + + L = dlqe(Ad,G,C,sigma_x,Sigma) + else + L = zeros(n_x,n_y); + endif + + obs_poles = eig(Ad-L*C) + + ## Control loop + y = []; + u = []; + t = []; + y_e = []; + t_e = []; + for i=1:I + i + if Simulate + t_sim = [0:p_c.N]*dt; + [yi,ui,xsi] = ppp_ystar (A,B,C,D,x,p_c.A_u,U,t_sim); + x = xsi(:,p_c.N+1); + y_now = yi(:,p_c.N+1); + else # The real thing + to_rt(U'); # Send U + data = from_rt(p_c.N); # Receive data + [yi,ui] = convert_data(data); + y_now = yi(:,p_c.N); # Current output + endif + + + ## Zero-gain (OL) observer with state resetting + [x_est y_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,delta,L); + + # ## Reset states + # x_est(2) = y_now(1); # Position + # x_est(4) = y_now(2)/g_s; # Angle + + ##Control + U = K_w*w- K_x*x_est; + + ## Save + ti = [(i-1)*p_c.N:i*p_c.N-1]*dt; + t = [t;ti']; + y = [y;yi(:,1:p_c.N)']; + u = [u;ui(:,1:p_c.N)']; + y_e = [y_e; y_est']; + t_e = [t_e; (i*p_c.N)*dt]; + endfor + + ## Put data on file (so can use for identification) + filename = sprintf("%s_ident_data.dat",Name); + eval(sprintf("save -ascii %s t y u",filename)); + + + ## Plot + gset nokey + title(""); + boxed=0; + monochrome=1; + grid; + xlabel("t"); + + ylabel("y"); + figure(1);plot(t,y, t_e,y_e,"+"); + # figfig("OL_y","eps",boxed,monochrome); + ylabel("u"); + figure(2);plot(t,u); + # figfig("OL_u","eps",boxed,monochrome); + +endfunction