Overview
Comment: | Made output of U and parameters consistent. |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
e9bb3a65498ab6ca4b229809db8a447d |
User & Date: | gawthrop@users.sourceforge.net on 2002-05-23 17:27:06 |
Other Links: | branch diff | manifest | tags |
Context
2002-05-24
| ||
11:04:10 | Removed unnecessary message about *.log file not existing when -D option is used. check-in: 0ff1595929 user: geraint@users.sourceforge.net tags: origin/master, trunk | |
2002-05-23
| ||
17:27:06 | Made output of U and parameters consistent. check-in: e9bb3a6549 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
17:26:07 | Cosmetic tweaks to graphs check-in: 6964cc60f6 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_nlin_run.m from [df20d4cf0c] to [76fba90674].
︙ | ︙ | |||
56 57 58 59 60 61 62 | simpar_model = simpar; # Initial internal model simulation params simpar_pred = simpar; # Initial prediction simulation params T_ol_0 = simpar.last; # The initial specified interval n_t = round(simpar.last/simpar.dt); # Corresponding length x_0 = eval(sprintf("%s_state(par);", system_name)); x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); | | > > < < > > > | 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | simpar_model = simpar; # Initial internal model simulation params simpar_pred = simpar; # Initial prediction simulation params T_ol_0 = simpar.last; # The initial specified interval n_t = round(simpar.last/simpar.dt); # Corresponding length x_0 = eval(sprintf("%s_state(par);", system_name)); x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); [n_par,m_par] = size(i_par); if nargin<8 Q = ones(n_y,1); endif ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); x_0s = eval(sprintf("%s_state(pars);", s_system_name)); x_0_models = x_0s; p = []; # Initialise saved parameters ## Times ## -- within opt horizon n_Tau = round(simpars.last/simpars.dt); dtau = simpars.dt; Tau = [0:n_Tau-1]'*dtau; [n_tau,n_w] = size(w_s); tau = Tau(n_Tau-n_tau+1:n_Tau); w = w_s(n_tau,:); # Final value of setpoint ## Main simulation loop y = []; x = []; u = []; t = []; t_last = 0; UU_l =[]; UU_c =[]; t_ppp = []; t_est = []; its_ppp = []; its_est = []; t_open = []; x_nexts = zeros(2*n_x,1); ## Initial U is zero [n_U,junk] = size(A_u); U = zeros(n_U,1); ## Initialise saved U UU = []; ## Create input basis functions u_star_tau = ppp_ustar(A_u,1,Tau',0,0,n_u-n_U); ## Reverse time to get "previous" U U_old = U; |
︙ | ︙ | |||
121 122 123 124 125 126 127 128 129 130 131 132 133 134 | A_u_sim = A_u; simpar_sim = simpar; T_total = simpar.last; endif for i = 0:N_ol # Main loop printf("%i",i); if (extras.simulate==1) [y_ol,u_ol] = ppp_RT_sim(U); # Simulate else [y_ol,u_ol] = ppp_RT(U); # Real thing endif t_start = time; # Initialise time | > > > > > > > > | 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | A_u_sim = A_u; simpar_sim = simpar; T_total = simpar.last; endif for i = 0:N_ol # Main loop printf("%i",i); UU = [UU; U']; # Save control U if n_par>0 par_est = pars(i_par(:,1)); p = [p; par_est']; # Save up the estimated parameters endif if (extras.simulate==1) [y_ol,u_ol] = ppp_RT_sim(U); # Simulate else [y_ol,u_ol] = ppp_RT(U); # Real thing endif t_start = time; # Initialise time |
︙ | ︙ | |||
143 144 145 146 147 148 149 | t_open = [t_open;T_ol]; ## Generate input to actual system u_star_t = ppp_ustar(A_u,1,t_ol',0,0,n_u-n_U); ## Tune parameters/states if (estimating_parameters==1) | < < < | 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | t_open = [t_open;T_ol]; ## Generate input to actual system u_star_t = ppp_ustar(A_u,1,t_ol',0,0,n_u-n_U); ## Tune parameters/states if (estimating_parameters==1) ## Set up according to interval length if (T_ol>T_ol_0) ## Truncate data simpar_est.last = T_ol_0; y_est = y_ol(1:n_t+1,:); else simpar_est.last = T_ol; |
︙ | ︙ | |||
241 242 243 244 245 246 247 | pars(i_ppp(:,1)) = U; # Put final value of U into the parameter vector ## Save up data y_ol = y_ol(1:n_ol,:); y = [y; y_ol]; u = [u; u_ol]; | < | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | pars(i_ppp(:,1)) = U; # Put final value of U into the parameter vector ## Save up data y_ol = y_ol(1:n_ol,:); y = [y; y_ol]; u = [u; u_ol]; t = [t; t_ol+t_last*ones(n_ol,1) ]; t_last = t_last + T_ol; endif if (extras.simulate==1) # Do the actual simulation |
︙ | ︙ |