1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
-
+
+
+
+
+
+
+
+
-
+
-
+
+
+
-
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
+
+
-
-
+
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: ode2obs_r
# Odrinary differential equations to observer function equations
# P.J.Gawthrop 14 June 1991, 8 Aug 1991, 2 April 1992, 14 April 1994, 28 Dec 94,
# 12th July 1995, April 1996
# 12th July 1995, April 1996
# Copyright (c) P.J.Gawthrop 1991, 1992, 1994, 1995, 1996.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.3 1996/08/25 10:07:05 peter
## Remove a du state ment causaing touble
## - but needs more work.
##
## Revision 1.2 1996/08/25 08:38:14 peter
## Error handling added.
##
## Revision 1.1 1996/08/25 08:37:44 peter
## Initial revision
##
###############################################################
#Inform user
echo Creating $1_obs.r
# Remove the old log file
rm -f ode2obs_r.log
# Use reduce to accomplish the transformation
reduce >ode2obs_r.log << EOF
%Read the formatting function
in "$MTTPATH/trans/reduce_matrix.r";
OFF Echo;
OFF Nat;
ON NERO;
in "$1_def.r";
MTTdxs := MTTdX; %Save the symbolic form of dX
%Set default values - reset by sympar file.
%Set default values - reset by obspar file.
MTTGPCNy := 2;
MTTGPCNu := 0;
in "$1_sympar.r";
%%in "$1_sympar.r";
in "$1_ode.r";
%%in "$1_simp.r";
in "$1_obspar.r";
%Create the U vector of input derivatives.
MTTNuu := (MTTGPCNu+1)*MTTNu;
MTTNuu1 := MTTGPCNu*MTTNu;
Matrix MTTUU(MTTNuu,1);
FOR i := 1:MTTNu DO
MTTUU(i,1) := MTTU(i,1);
END;
IF MTTGPCNu>0 THEN
BEGIN
FOR i := 1:MTTNu DO
MTTUU(i+MTTNu,1) := MTTdU(i,1);
END;
END;
%FOR i := 1:MTTNu DO
% MTTUU(i,1) := MTTU(i,1);
%END;
%
%IF MTTGPCNu>0 THEN
%BEGIN
% FOR i := 1:MTTNu DO
% MTTUU(i+MTTNu,1) := MTTdU(i,1);
% END;
%END;
MTTU := MTTU;
% MTTdU := MTTdU; ---- removed temporarily, needs def file change?
MTTdU := MTTdU; % ---- removed temporarily, needs def file change?
MTTUU := MTTUU;
%Create the Y vector of output derivatives.
MTTNyy := (MTTGPCNy+1)*MTTNy;
Matrix MTTYY(MTTNyy,1);
FOR i := 1:MTTNy DO
MTTYY(i,1) := MTTY(i,1);
END;
l := MTTNy;
FOR i := 1:MTTGPCNy DO
FOR j := 1:MTTNy DO
BEGIN
l := l+1;
MTTYY(l,1) := 0;
FOR k := 1:MTTNx DO %Derivatives wrt x
BEGIN
xk := MTTX(k,1);
MTTYY(l,1) := MTTYY(l,1) + df(MTTYY(l-MTTNy,1), xk, 1)*MTTdX(k,1);
END;
IF MTTNuu1>0 THEN
FOR k := 1:MTTNuu1 DO %Derivatives wrt u
IF MTTGPCNu>0 THEN
FOR k := 1:MTTGPCNu DO %Derivatives wrt u
BEGIN
uk := MTTUU(k,1);
MTTYY(l,1) := MTTYY(l,1) + df(MTTYY(l-MTTNy,1), uk, 1)*MTTUU(k+MTTNu,1);
uk := MTTUU(1,k);
MTTYY(l,1) := MTTYY(l,1) + df(MTTYY(l,1), uk, 1)*MTTUU(1,k+1);
END;
END;
END;
%Create O_x - derivative of YY wrt x
Matrix MTTO_x(MTTNyy,MTTNx);
FOR j := 1:MTTNx DO
BEGIN
xj := MTTX(j,1);
FOR i := 1:MTTNyy DO
BEGIN
MTTO_x(i,j) := df(MTTYY(i,1), xj);
END;
END;
%%Create O_x - derivative of YY wrt x
%Matrix MTTO_x(MTTNyy,MTTNx);
%FOR j := 1:MTTNx DO
% BEGIN
% xj := MTTX(j,1);
% FOR i := 1:MTTNyy DO
% BEGIN
% MTTO_x(i,j) := df(MTTYY(i,1), xj);
% END;
% END;
%Create O_u - derivative of YY wrt u (Assumes GPC Nu = 0)
MTTNNu := (MTTGPCNu+1)*MTTNu;
Matrix MTTO_u(MTTNyy,MTTNNu);
FOR j := 1:MTTNNu DO
BEGIN
uj := MTTu(j,1);
FOR i := 1:MTTNyy DO
BEGIN
MTTO_u(i,j) := df(MTTYY(i,1), uj);
END;
END;
%%Create O_u - derivative of YY wrt u (Assumes GPC Nu = 0)
%MTTNNu := (MTTGPCNu+1)*MTTNu;
%Matrix MTTO_u(MTTNyy,MTTNNu);
%FOR j := 1:MTTNNu DO
% BEGIN
% uj := MTTu(j,1);
% FOR i := 1:MTTNyy DO
% BEGIN
% MTTO_u(i,j) := df(MTTYY(i,1), uj);
% END;
% END;
%Create O_uu - derivative of O_u wrt u (Assumes GPC Nu = 0)
%This is a multi-dimensional matrix kth elements stacked sideways.
Matrix MTTO_uu(MTTNyy,MTTNNu*MTTNNu);
FOR k := 1:MTTNNu DO
BEGIN
%%Create O_uu - derivative of O_u wrt u (Assumes GPC Nu = 0)
%%This is a multi-dimensional matrix kth elements stacked sideways.
%Matrix MTTO_uu(MTTNyy,MTTNNu*MTTNNu);
%FOR k := 1:MTTNNu DO
% BEGIN
% uk := MTTu(k,1);
% FOR j := 1:MTTNNu DO
% BEGIN
uk := MTTu(k,1);
FOR j := 1:MTTNNu DO
BEGIN
FOR i := 1:MTTNyy DO
BEGIN
jk := j+(k-1)*MTTNu;
MTTO_uu(i,jk) := df(MTTO_u(i,j), uk);
END;
END;
END;
% FOR i := 1:MTTNyy DO
% BEGIN
% jk := j+(k-1)*MTTNu;
% MTTO_uu(i,jk) := df(MTTO_u(i,j), uk);
% END;
% END;
% END;
%Create O_ux - derivative of O_u wrt x
%This is a multi-dimensional matrix kth elements stacked sideways.
Matrix MTTO_ux(MTTNyy,MTTNu*MTTNx);
FOR k := 1:MTTNx DO
BEGIN
xk := MTTx(k,1);
FOR j := 1:MTTNu DO
BEGIN
FOR i := 1:MTTNyy DO
BEGIN
jk := j+(k-1)*MTTNu;
MTTO_ux(i,jk) := df(MTTO_u(i,j), xk);
END;
END;
END;
%%Create O_ux - derivative of O_u wrt x
%%This is a multi-dimensional matrix kth elements stacked sideways.
%Matrix MTTO_ux(MTTNyy,MTTNu*MTTNx);
%FOR k := 1:MTTNx DO
% BEGIN
% xk := MTTx(k,1);
% FOR j := 1:MTTNu DO
% BEGIN
% FOR i := 1:MTTNyy DO
% BEGIN
% jk := j+(k-1)*MTTNu;
% MTTO_ux(i,jk) := df(MTTO_u(i,j), xk);
% END;
% END;
% END;
mtt_matrix := MTTYY$
mtt_matrix_n := MTTNy*MTTGPCNy;
mtt_matrix_m := 1;
mtt_matrix_name := "MTTYY"$
%%Create the _obs.r file
OUT "$1_obs.r";
reduce_matrix();
MTTYY := MTTYY;
MTTO_x := MTTO_x;
MTTO_u := MTTO_u;
MTTO_uu := MTTO_uu;
MTTO_ux := MTTO_ux;
%MTTO_x := MTTO_x;
%MTTO_u := MTTO_u;
%MTTO_uu := MTTO_uu;
%MTTO_ux := MTTO_ux;
write ";END;";
SHUT "$1_obs.r";
quit;
EOF
# Now invoke the standard error handling.
mtt_error_r ode2obs_r.log
|