Overview
Comment: | Addes Q weighting matrix |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
8e162b30dce1b77d90e609e7a6c6bab4 |
User & Date: | gawthrop@users.sourceforge.net on 2002-05-13 16:01:10 |
Other Links: | branch diff | manifest | tags |
Context
2002-05-13
| ||
16:11:09 | Various changes check-in: 079339165e user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
16:01:10 | Addes Q weighting matrix check-in: 8e162b30dc user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
08:52:23 |
FIRST parameter of simpar now specifies first printed point - simulation still starts at zero check-in: b97e3c9beb user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_nlin.m from [543adc29f3] to [d0ab21bae9].
|
| | | | > > > > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | function [U, U_all, Error, Y, its] = ppp_nlin(system_name,x_0,par_0,sim,us,w,free, Q, extras) ## usage: [U, U_all, Error, Y,its ] = ppp_nlin(system_name,x_0,par_0,sim,us,w,free, Q, extras) ## ## if nargin<9 extras.criterion = 1e-8; extras.max_iterations = 10; extras.v = 0.1; extras.verbose = 1; endif s_system_name = sprintf("s%s", system_name); # Name of sensitivity system ## Details [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); [n_tau,n_us] = size(us); if nargin<8 Q = ones(n_y,1); endif ## Checks if (n_us<>n_u) error(sprintf("Inputs (%i) differenct to system inputs (%i)", n_us, n_u)); endif ##Optimise [par,Par,Error,Y,its] = ppp_optimise(s_system_name,x_0,par_0,sim,us,w,free,Q,extras); U = par(free(:,1)); U_all = Par(free(:,1),:); endfunction |
Modified mttroot/mtt/lib/control/PPP/ppp_nlin_run.m from [a7eaf434e3] to [37eb564d85].
|
| | | 1 2 3 4 5 6 7 8 | function [y,u,t,p,UU,t_open,t_ppp,t_est,its_ppp,its_est] = ppp_nlin_run(system_name,i_ppp,i_par,A_u,w_s,N_ol,Q,extras) ## usage: [y,u,t,p,U,t_open,t_ppp,t_est,its_ppp,its_est] = ## ppp_nlin_run (system_name,i_ppp,i_par,A_u,w_s,N_ol[,extras]) ## ## y,u,t System output, input and corresponding time p ## Estimated parameters U PPP weight vector t_open The |
︙ | ︙ | |||
27 28 29 30 31 32 33 | ## Real-time implementatipn of nonlinear PPP Copyright (C) 2001,2002 ## by Peter J. Gawthrop ## Globals to pass details to simulation global system_name_sim i_ppp_sim x_0_sim y_sim u_sim A_u_sim simpar_sim ## Defaults | | | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ## Real-time implementatipn of nonlinear PPP Copyright (C) 2001,2002 ## by Peter J. Gawthrop ## Globals to pass details to simulation global system_name_sim i_ppp_sim x_0_sim y_sim u_sim A_u_sim simpar_sim ## Defaults if nargin<8 extras.alpha = 0.1; extras.criterion = 1e-5; extras.emulate_timing = 0; extras.max_iterations = 10; extras.simulate = 1; extras.v = 1e-5; extras.verbose = 0; |
︙ | ︙ | |||
57 58 59 60 61 62 63 64 65 66 67 68 69 70 | simpar_pred = simpar; # Initial prediction simulation params T_ol_0 = simpar.last; # The initial specified interval n_t = round(simpar.last/simpar.dt); # Corresponding length x_0 = eval(sprintf("%s_state(par);", system_name)); x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); x_0s = eval(sprintf("%s_state(pars);", s_system_name)); x_0_models = x_0s; ## Times | > > > > | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | simpar_pred = simpar; # Initial prediction simulation params T_ol_0 = simpar.last; # The initial specified interval n_t = round(simpar.last/simpar.dt); # Corresponding length x_0 = eval(sprintf("%s_state(par);", system_name)); x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); if nargin<8 Q = ones(n_y,1); endif ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); x_0s = eval(sprintf("%s_state(pars);", s_system_name)); x_0_models = x_0s; ## Times |
︙ | ︙ | |||
161 162 163 164 165 166 167 | ## Optimise tick = time; [pars,Par,Error,Y,its] = \ ppp_optimise(s_system_name,x_0_models,pars,simpar_est,u_star_t,y_est,i_par,extras); if extras.visual | | | 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | ## Optimise tick = time; [pars,Par,Error,Y,its] = \ ppp_optimise(s_system_name,x_0_models,pars,simpar_est,u_star_t,y_est,i_par,extras); if extras.visual figure(11); title("Parameter optimisation"); II = [1:length(y_est)]; plot(II,y_est,"*", II,Y); endif est_time = time-tick; t_est = [t_est;est_time]; its_est = [its_est; its-1]; |
︙ | ︙ | |||
201 202 203 204 205 206 207 | x_next = x_next(n_t+1,:)'; # Initial state for next time x_nexts(1:2:(2*n_x)-1) = x_next; # And for internal sensitivity model ## Optimize for next interval U_old = U; # Save previous value U = expm(A_u*T_ol)*U; # Initialise from continuation trajectory pars(i_ppp(:,1)) = U; # Put initial value of U into the parameter vector | | | | 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | x_next = x_next(n_t+1,:)'; # Initial state for next time x_nexts(1:2:(2*n_x)-1) = x_next; # And for internal sensitivity model ## Optimize for next interval U_old = U; # Save previous value U = expm(A_u*T_ol)*U; # Initialise from continuation trajectory pars(i_ppp(:,1)) = U; # Put initial value of U into the parameter vector [U, U_all, Error, Y, its] = ppp_nlin(system_name,x_nexts,pars,simpars,u_star_tau,w_s,i_ppp,Q,extras); if extras.visual figure(12); title("PPP optimisation"); II = [1:length(w_s)]; plot(II,w_s,"*", II,Y); figure(1); endif ppp_time = time-tick; t_ppp = [t_ppp;ppp_time]; |
︙ | ︙ |
Modified mttroot/mtt/lib/control/PPP/ppp_optimise.m from [fc79616ba1] to [bf1568c82a].
1 | function [par,Par,Error,Y,iterations,x] = \ | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | function [par,Par,Error,Y,iterations,x] = \ ppp_optimise(system_name,x_0,par_0,simpar,u,y_0,free,Q,extras); ## Levenberg-Marquardt optimisation for PPP/MTT ## Usage: [par,Par,Error,Y,iterations,x] = ppp_optimise(system_name,x_0,par_0,simpar,u,y_0,free[,extras]); ## system_name String containing system name ## x_0 Initial state ## par_0 Initial parameter vector estimate ## simpar Simulation parameters: ## .first first time ## .dt time increment ## .stepfactor Euler integration step factor ## u System input (column vector, each row is u') ## y_0 Desired model output ## free one row for each adjustable parameter ## first column parameter indices ## second column corresponding sensitivity indices ## Q vector of positive output weights. ## extras (opt) optimisation parameters ## .criterion convergence criterion ## .max_iterations limit to number of iterations ## .v Initial Levenberg-Marquardt parameter ###################################### ##### Model Transformation Tools ##### ###################################### ############################################################### ## Version control history ############################################################### ## $Id$ ## $Log$ ## Revision 1.9 2002/05/08 10:14:21 gawthrop ## Idetification now OK (Moved data range in ppp_optimise by one sample interval) ## ## Revision 1.8 2002/04/23 17:50:39 gawthrop ## error --> err to avoid name clash with built in function ## ## Revision 1.7 2001/08/10 16:19:06 gawthrop ## Tidied up the optimisation stuff ## ## Revision 1.6 2001/07/03 22:59:10 gawthrop |
︙ | ︙ | |||
59 60 61 62 63 64 65 | ## Copyright (C) 1999,2000 by Peter J. Gawthrop sim_command = sprintf("%s_ssim(x_0,par,simpar,u,i_s)", system_name); ## Extract indices i_t = free(:,1); # Parameters i_s = free(:,2)'; # Sensitivities | | > > > > | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | ## Copyright (C) 1999,2000 by Peter J. Gawthrop sim_command = sprintf("%s_ssim(x_0,par,simpar,u,i_s)", system_name); ## Extract indices i_t = free(:,1); # Parameters i_s = free(:,2)'; # Sensitivities if nargin<9 extras.criterion = 1e-5; extras.max_iterations = 10; extras.v = 1e-5; extras.verbose = 0; endif [n_data,n_y] = size(y_0); if n_data<n_y error("ppp_optimise: y_0 should be in columns, not rows") endif if nargin<8 Q = ones(n_y,1); endif n_th = length(i_s); err_old = inf; err_old_old = inf; err = 1e50; reduction = inf; predicted_reduction = 0; par = par_0; |
︙ | ︙ | |||
126 127 128 129 130 131 132 | ##Evaluate error, cost derivative J and cost second derivative JJ err = 0; J = zeros(n_th,1); JJ = zeros(n_th,n_th); for i = 1:n_y E = y(:,i) - y_0(:,i); # Error in ith output | | | | | 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | ##Evaluate error, cost derivative J and cost second derivative JJ err = 0; J = zeros(n_th,1); JJ = zeros(n_th,n_th); for i = 1:n_y E = y(:,i) - y_0(:,i); # Error in ith output err = err + Q(i)*(E'*E); # Sum the squared error over outputs y_par_i = y_par(:,i:n_y:n_y*n_th); # sensitivity function (ith output) J = J + Q(i)*y_par_i'*E; # Jacobian JJ = JJ + Q(i)*y_par_i'*y_par_i; # Newton Euler approx Hessian endfor if iterations>1 # Adjust the Levenberg-Marquardt parameter reduction = err_old-err; predicted_reduction = 2*J'*step + step'*JJ*step; r = predicted_reduction/reduction; if (r<0.25)||(reduction<0) |
︙ | ︙ |