Overview
Comment: | Trying to fix parameter identification problem ... |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
73256b3545eeebac29bcbad7ba41bea1 |
User & Date: | gawthrop@users.sourceforge.net on 2002-05-07 16:28:26 |
Other Links: | branch diff | manifest | tags |
Context
2002-05-07
| ||
23:50:34 |
Preliminary support for Matlab dynamically linked shared objects: invoke with: mtt -cc sys rep mexglx ode2odes support is not yet included. check-in: db3acb3909 user: geraint@users.sourceforge.net tags: origin/master, trunk | |
16:28:26 | Trying to fix parameter identification problem ... check-in: 73256b3545 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
13:48:43 |
Improved clarity of code generated for -cc and -oct (except ode2odes). Octave DEFUN_DLDs now call (rather than replace) their .cc equivalents. check-in: 058538fe27 user: geraint@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_nlin_run.m from [313a218248] to [3008238ce6].
︙ | ︙ | |||
31 32 33 34 35 36 37 | global system_name_sim i_ppp_sim x_0_sim y_sim u_sim A_u_sim simpar_sim ## Defaults if nargin<7 extras.alpha = 0.1; extras.criterion = 1e-5; extras.emulate_timing = 0; | < > > > | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | global system_name_sim i_ppp_sim x_0_sim y_sim u_sim A_u_sim simpar_sim ## Defaults if nargin<7 extras.alpha = 0.1; extras.criterion = 1e-5; extras.emulate_timing = 0; extras.max_iterations = 10; extras.simulate = 1; extras.v = 1e-5; extras.verbose = 0; endif ##Estimate if we have some adjustable parameters estimating_parameters = (length(i_par)>0) ## Names s_system_name = sprintf("s%s", system_name); ## System details -- defines simulation within ol interval par = eval(sprintf("%s_numpar;", system_name)); simpar = eval(sprintf("%s_simpar;", system_name)); |
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 67 68 69 70 71 | x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); x_0s = eval(sprintf("%s_state(pars);", s_system_name)); ## Times ## -- within opt horizon n_Tau = round(simpars.last/simpars.dt); dtau = simpars.dt; Tau = [0:n_Tau-1]'*dtau; [n_tau,n_w] = size(w_s); | > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | x_0_model = x_0; [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); x_0s = eval(sprintf("%s_state(pars);", s_system_name)); x_0_models = x_0s; ## Times ## -- within opt horizon n_Tau = round(simpars.last/simpars.dt); dtau = simpars.dt; Tau = [0:n_Tau-1]'*dtau; [n_tau,n_w] = size(w_s); |
︙ | ︙ | |||
134 135 136 137 138 139 140 | T_ol = n_ol*dt; # Length of ol interval t_open = [t_open;T_ol]; ## Generate input to actual system u_star_t = ppp_ustar(A_u,1,t_ol',0,0,n_u-n_U); ## Tune parameters/states | | | | > | | | | > | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | T_ol = n_ol*dt; # Length of ol interval t_open = [t_open;T_ol]; ## Generate input to actual system u_star_t = ppp_ustar(A_u,1,t_ol',0,0,n_u-n_U); ## Tune parameters/states if (estimating_parameters==1) ## Save up the estimated parameters par_est = pars(i_par(:,1)) p = [p; par_est']; ## Set up according to interval length if (T_ol>T_ol_0) ## Truncate data simpar_est.last = T_ol_0; y_est = y_ol(1:n_t+1,:); else simpar_est.last = T_ol; y_est = y_ol; endif simpar_pred.last = T_ol_0; # Predicted length of next interval pars(i_ppp(:,1)) = U_old; # Update the simulation ppp weights ## Optimise tick = time; [pars,Par,Error,Y,its] = \ ppp_optimise(s_system_name,x_0_models,pars,simpar_est,u_star_t,y_est,i_par,extras); II = [1:length(y_est)]; plot(II,y_est,"*", II,Y) est_time = time-tick; t_est = [t_est;est_time]; its_est = [its_est; its-1]; endif ## Update internal model par(i_ppp(:,3)) = U_old; # Update the internal model ppp weights if (estimating_parameters==1) par(i_par(:,3)) = pars(i_par(:,1)); # Update the internal model params endif simpar_model.last = T_ol; [y_model,x_model] = eval(sprintf("%s_sim(x_0_model, par, simpar_model, \ u_star_t);",system_name)); x_0 = x_model(n_ol+1,:)'; # Initial state of next interval x_0_model = x_0; x_0_models(1:2:(2*n_x)-1) = x_0_model; ## Compute U by optimisation tick = time; ## Predict state at start of next interval par(i_ppp(:,3)) = U; [y_next,x_next] = eval(sprintf("%s_sim(x_0, par, simpar, \ u_star_t);",system_name)); x_next = x_next(n_t+1,:)'; # Initial state for next time x_nexts(1:2:(2*n_x)-1) = x_next; # And for internal sensitivity model ## Optimize for next interval U_old = U; # Save previous value U = expm(A_u*T_ol)*U; # Initialise from continuation trajectory pars(i_ppp(:,1)) = U; # Put initial value of U into the parameter vector [U, U_all, Error, Y, its] = ppp_nlin(system_name,x_nexts,pars,simpars,u_star_tau,w_s,i_ppp,extras); |
︙ | ︙ |