Overview
Comment: | New example - used for teaching about linearisation ... |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
4bc499042c51a58953c6adf95331c69f |
User & Date: | gawthrop@users.sourceforge.net on 2002-03-07 16:24:16 |
Other Links: | branch diff | manifest | tags |
Context
2002-03-26
| ||
11:58:58 | Added cputime monitoring. check-in: b249b4a2fa user: geraint@users.sourceforge.net tags: origin/master, trunk | |
2002-03-07
| ||
16:24:16 | New example - used for teaching about linearisation ... check-in: 4bc499042c user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
2002-02-19
| ||
16:27:06 | Changes to make MTT work out of the box with Debian. check-in: 885684d1df user: geraint@users.sourceforge.net tags: origin/master, trunk | |
Changes
Added mttroot/mtt/lib/examples/Mechanical/Mechanical-1D/NonlinearMSD/NonlinearMSD_abg.fig version [6195b18731].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #FIG 3.2 Portrait Center Metric A4 100.00 Single -2 1200 2 0 32 #969296 0 33 #e7e7cf 0 34 #9e9a9e 0 35 #cf9200 0 36 #f761ae 0 37 #7171ff 0 38 #595d59 1 3 0 3 1 7 55 0 -1 0.000 1 0.0000 1845 2430 186 186 1845 2430 2031 2430 2 2 0 1 1 7 55 0 47 0.000 0 0 -1 0 0 5 1800 2475 4500 2475 4500 2925 1800 2925 1800 2475 2 1 0 3 1 7 55 0 -1 0.000 0 0 -1 0 0 2 1830 2467 3180 129 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 3375 5625 4725 5625 4500 5850 2 1 0 3 1 7 55 0 -1 0.000 0 0 -1 0 0 12 4453 2442 4177 1964 3884 2024 4282 1579 3700 1707 4103 1268 3521 1396 3914 946 3337 1077 3749 632 3445 696 3158 215 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 2925 5625 1575 5625 1800 5850 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 3150 5400 3150 4050 3375 4275 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 3150 7200 3150 5850 3375 6075 4 1 1 55 0 32 30 0.0000 4 315 240 2385 2295 q\001 4 0 1 55 0 3 30 0.0000 4 300 270 2025 1260 L\001 4 0 1 55 0 3 30 0.0000 4 300 270 3105 3510 L\001 4 1 1 55 0 32 30 0.0000 4 225 195 1530 2250 t\001 4 1 0 100 0 18 18 0.0000 4 195 150 3150 5715 1\001 4 1 0 100 0 18 18 0.0000 4 210 390 3195 3915 R:r\001 4 1 4 100 0 18 18 0.0000 4 270 930 3060 7515 SS:[yu]\001 4 1 0 100 0 18 18 0.0000 4 270 240 1305 5715 I:j\001 4 0 0 100 0 18 18 0.0000 4 270 8610 4860 5715 C:k:mtt_e=k*(l^2)*cos(mtt_f/2)*2*(sin(mtt_f/2)-sin(alpha/2))+0*eta\001 4 0 1 101 0 3 20 0.0000 4 270 3255 4950 675 Rod (length L) hinged at left\001 4 0 1 101 0 3 20 0.0000 4 270 4275 4950 1125 Spring (stiffness k) unstretched when \001 4 0 1 101 0 32 20 0.0000 4 210 510 9225 1125 q=a\001 4 0 1 101 0 3 20 0.0000 4 270 3120 4950 1575 eta is the equilibrium angle\001 |
Added mttroot/mtt/lib/examples/Mechanical/Mechanical-1D/NonlinearMSD/NonlinearMSD_desc.tex version [84c725288d].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | % -*-latex-*- Put EMACS into LaTeX-mode % Verbal description for system NonlinearMSD (NonlinearMSD_desc.tex) % Generated by MTT on Thu Mar 7 14:48:47 GMT 2002. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% Version control history % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% $Id$ % %% $Log$ % %% Revision 1.1 2000/12/28 09:13:38 peterg % %% Initial revision % %% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This example illustrates the use of \textbf{MTT} to \emph{linaerise} a nonlinear system -- a non-linear mass-spring-damper system called \textbf{NonlinearMSD}. The model is considered in Section \ref{sec:model} and linearisation in Section \Ref{sec:linearisation}. Further work is suggested in Section \Ref{sec:further}. \subsection{Bond Graph model}\label{sec:model} The schematic diagram of the system \textbf{NonlinearMSD} is displayed in Figure \ref{fig:NonlinearMSD_abg.ps}. The system comprises \begin{itemize} \item a rigid foundation, \item a rod of length $L$ hinged at the left-hand end and \item a linear spring of stiffness $k$ attached to the rigid foundation a distance $L$ from the hinge and to the free end of the rod. \end{itemize} The spring is unstretched when the rod makes an angle $\theta = \alpa = \frac{pi}{3}$ with the foundation. Using elementary geometry, the effectice angular spring generates a torque $\tau$ given by (\ref{eq:spring}) \begin{equation}\label{eq:spring} \tau = -2kl^2 \cos{\frac{\theta}{2}} (\sin{\frac{\theta}{2}}-\sin{\frac{\alpha}{2}}) \end{equation} The acausal bond graph of system \textbf{NonlinearMSD} is also displayed in Figure \Ref{fig:NonlinearMSD_abg.ps}. This shows the three bond graph components representing the friction \textbf{R}, the inertia \textbf{I} and the spring \textbf{C} components. The non-linear spring characteristic is given explicitly\footnote{The additional 0*eta term has no effect - it merely introduced the variable $\eta$ -- the equilibrium angle -- into the model}. The (nonlinear) system ordinary differential equation is given by \textbf{MTT} in Section \Ref{sec:NonlinearMSD_ode.tex}. This is a special case of the general non-linear ordinary differential equation: \begin{equation} \label{eq:non-state} \begin{cases} \dot{x} = f(x,u)\\ y = g(x,u) \end{cases} \end{equation} \subsection{Linearisation} \label{sec:linearisation} The first step in linearisation is to determine a set of (constant) states $x_e$ and (constant) inputs $u_e$ so that the system is in equilibrium - that is \begin{equation} \label{eq:eqilibrium} \dot{x} = f(x_e,u_e) = 0 \end{equation} In this case, choosing an angle $\theta=\eta$ and an input: \begin{equation}\label{eq:u_e} u_e = -\tau = 2kl^2 \cos{\frac{\eta}{2}} (\sin{\frac{\eta}{2}}-\sin{\frac{\alpha}{2}}) \end{equation} together with zero velocity gives an equilibrium. With this choice The linearised system is given in terms of the $A$, $B$, $C$ and $D$ matrices appearing in the state equation: \begin{equation} \label{eq:state} \begin{cases} \dot{x} = Ax + Bu\\ y = Cx + Du \end{cases} \end{equation} \textbf{MTT} automatically generates these matrices -- see Section \Ref{sec:NonlinearMSD_sm.tex}. \subsection{Further work} \label{sec:further} \begin{enumerate} \item Derive the system ordinary differential equation appearing in Section \Ref{sec:NonlinearMSD_ode.tex}. \item Explain how the input of (\ref{eq:u_e}) gives equilibrium for all $\eta$. \item Explain how the elements of the $A$, $B$, $C$ and $D$ appearing Section \Ref{sec:NonlinearMSD_sm.tex} arise from the ordinary differential equation of Section \Ref{sec:NonlinearMSD_ode.tex} together with the input of (\ref{eq:u_e}). \item Setting up parameters, inputs and initial state as in Sections \Ref{sec:NonlinearMSD_numpar.tex}, \Ref{sec:NonlinearMSD_input.tex} and \Ref{sec:NonlinearMSD_state.tex}, perform simulations as in Section \Ref{sec:NonlinearMSD_state.tex} - the figure shows the angular \emph{velocity} $\dot{\theta}$. \item Repeat the simulation with different perturbations by modifying the file ``NonlinearMSD\_input.tex'' (see Section \Ref{sec:NonlinearMSD_input.tex}) \begin{enumerate} \item note that for smaller perturbations, the graphs are of similar shape (scaled by the perturbation input) \item note that for larger perturbations the graphs are quite different - this is a non-linear system. \end{enumerate} \item \label{item:1} Repeat the simulation with different equilibrium angles $\eta$ by modifying the file ``NonlinearMSD\_numpar.tex'' (see Section \Ref{sec:NonlinearMSD_numpar.tex}) appropriately. Note that when $\eta=\pi$, the linearised system is \emph{unstable}. \item The (2,1) element of the $A$ matrix in Section \Ref{sec:NonlinearMSD_sm.tex} is the \emph{linearised} stiffness $k_l$. Plot this against $\eta$ and explain the observation in item \ref{item:1}. \end{enumerate} |
Added mttroot/mtt/lib/examples/Mechanical/Mechanical-1D/NonlinearMSD/NonlinearMSD_input.txt version [96b10a19b1].
> > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 | ## -*-octave-*- Put Emacs into octave-mode ## ## ## System NonlinearMSD, representation input, language txt; ## File NonlinearMSD_input.txt; ## Generated by MTT on Thu Mar 7 10:50:46 GMT 2002; ## First term is the equilibrium input; last term is the perturbation input. NonlinearMSD_yu = k*(l^2)*cos(eta/2)*2*(sin(eta/2)-sin(alpha/2)) + 1e-2; |
Added mttroot/mtt/lib/examples/Mechanical/Mechanical-1D/NonlinearMSD/NonlinearMSD_numpar.txt version [da778d0db5].
> > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## -*-octave-*- Put Emacs into octave-mode ## ## ## System NonlinearMSD, representation numpar, language txt; ## File NonlinearMSD_numpar.txt; ## Generated by MTT on Thu Mar 7 14:03:19 GMT 2002; alpha = pi/3; # Angle for unstretched string eta = pi/3; # Equilibrium angle j = 1.0; # Inertia k = 1.0; # Spring constant l = 1.0; # Rod length r = 1.0; # Rotational resistance |