1
2
3
4
5
6
7
8
9
10
|
1
2
3
4
5
6
7
8
9
10
|
-
+
-
+
|
function [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o)
function [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o)
## usage: [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o);
## usage: [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o);
##
##
## Linear closed-loop PPP of lego system (and simulation)
##
## Name: Name of system (in mtt terms)
## Simulate = 0: real thing
## Simulate = 1: simulate
|
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
-
+
-
+
-
+
-
+
-
-
-
-
+
+
+
-
+
-
-
+
+
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
-
+
-
-
-
-
-
+
-
-
+
-
-
-
-
-
+
+
-
+
-
-
+
+
+
+
+
+
+
+
+
-
-
+
+
-
+
-
+
+
+
+
+
+
+
+
-
+
-
-
+
+
-
-
+
-
-
-
-
-
+
+
+
+
-
+
-
+
+
+
+
|
endif
if nargin<3
ControlType = 2;
endif
if nargin<4
w = 1;
w = ones(n_y,1);;
endif
if nargin<5
p_c.N = 10;
x_0 = zeros(n_x,1);
endif
if nargin<6
p_o.sigma = 0.001;
p_c.N = 5;
endif
if nargin<7
# if !struct_contains(p_c,"N")
# p_c.N = 10; # Number of small samples per large sample
# endif
p_o.sigma = 1e-1;
endif
if !struct_contains(p_c,"delta_ol")
p_c.delta_ol = 1.0; # OL sample interval
p_c.delta_ol = 0.5; # OL sample interval
endif
if !struct_contains(p_c,"T")
p_c.T = 5.0; # Last time point.
endif
if !struct_contains(p_c,"A_w")
p_c.A_w = 0;
if !struct_contains(p_c,"Method")
p_c.Method = "lq";
endif
if !struct_contains(p_c,"A_u")
p_c.N_u = 3;
a_u = 2.0;
p_c.A_u = ppp_aug(p_c.A_w,laguerre_matrix(p_c.N_u-1,a_u));
endif
if struct_contains(p_c,"Method")
if strcmp(p_c.Method,"lq")
p_c.Q = eye(n_y);
p_c.R = (0.5^2)*eye(n_u);
p_c.N_u = n_x;
elseif strcmp(p_c.Method,"original");
if !struct_contains(p_c,"A_w")
p_c.A_w = 0;
endif
if !struct_contains(p_c,"A_u")
p_c.N_u = n_x;
a_u = 1.0;
p_c.A_u = laguerre_matrix(p_c.N_u,a_u)
endif
else
error(sprintf("Method %s not recognised", p_c.Method));
endif
endif
if !struct_contains(p_c,"Method")
if !struct_contains(p_o,"x_0")
p_c.Method = "lq";
p_c.Q = eye(n_y);
p_c.R = (0.1^2)*eye(n_u);
p_c.N_u = n_x;
p_o.x_0 = zeros(n_x,1);
endif
[p_c.N_u,M_u] = size(p_c.A_u);
if (p_c.N_u<>M_u)
error("A_u must be square");
endif
## Check w.
[n_w,m_w] = size(w);
if ( (n_w<>n_y) || (m_w<>1) )
error(sprintf("ppp_lin_run: w must a column vector with %i elements",n_y));
endif
## Initialise
x_0 = zeros(n_x,1);
x_est = x_0;
x_est = p_o.x_0;
## Initilise simulation state
x = x_0;
##x(2) = 0.2;
# x(2) = y_0(1);
# x(4) = y_0(2);
if ControlType==0 # Step input
I = 1; # 1 large sample
p_c.delta_ol = p_c.T # I
K_w = zeros(p_c.N_u,n_y);
K_w(1,1) = 1;
K_w(2,1) = -1;
K_x = zeros(p_c.N_u,n_x);
U = K_w*w; # Initial control U
else # PPP control
I = ceil(p_c.T/p_c.delta_ol); # Number of large samples
else
I = ceil(p_c.T/p_c.delta_ol) # Number of large samples
if strcmp(p_c.Method, "original")
tau = [10:0.1:11]*(2/a_u); # Time horizons
[k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
elseif strcmp(p_c.Method, "lq")
elseif strcmp(p_c.Method, "lq") # LQ design
tau = [0:0.001:1.0]*5; # Time horizons
[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,p_c.A_u] \
= ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R);
else
error(sprintf("Method %s not recognised", p_c.Method));
endif
U = K_w*w; # Initial control U
##Sanity check A_u
[p_c.N_u,M_u] = size(p_c.A_u);
if (p_c.N_u<>M_u)
error("A_u must be square");
endif
U = K_w*w # Initial control U
## Checks
[ol_zeros, ol_poles] = sys2zp(sys)
cl_poles = eig(A - B*k_x)
endif
## Observer design
Ad = expm(A*p_c.delta_ol); # Discrete-time transition matrix
if (ControlType==2)
G = eye(n_x); # State noise gain
if (ControlType==2) #
G = eye(n_x); # State noise gain
sigma_x = eye(n_x); # State noise variance
Sigma = p_o.sigma*eye(n_y); # Measurement noise variance
Sigma = p_o.sigma*eye(n_y) # Measurement noise variance
L = dlqe(Ad,G,C,sigma_x,Sigma)
else
L = zeros(n_x,n_y);
endif
obs_poles = eig(Ad-L*C)
obs_poles = eig(Ad-L*C);
## Short sample interval
dt = p_c.delta_ol/p_c.N;
## Write the include file for the real-time function
disp("Writing Ustar.h");
ppp_ustar2h(ppp_ustar (p_c.A_u, n_u, [0:dt:p_c.delta_ol], 0,0));
## Control loop
y = [];
u = [];
t = [];
y_e = [];
t_e = [];
e_e = [];
tick = time;
for i=1:I
i
if Simulate
t_sim = [0:p_c.N]*dt;
[yi,ui,xsi] = ppp_ystar (A,B,C,D,x,p_c.A_u,U,t_sim);
x = xsi(:,p_c.N+1);
y_now = yi(:,p_c.N+1);
else # The real thing
to_rt(U'); # Send U
data = from_rt(p_c.N); # Receive data
[yi,ui] = convert_data(data);
[yi,ui] = convert_data(data);
y_now = yi(:,p_c.N); # Current output
endif
## Observer
## Zero-gain (OL) observer with state resetting
[x_est y_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
[x_est y_est e_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
# ## Reset states
# x_est(2) = y_now(1); # Position
# x_est(4) = y_now(2)/g_s; # Angle
##Control
U = K_w*w- K_x*x_est;
U = K_w*w - K_x*x_est
## Save
ti = [(i-1)*p_c.N:i*p_c.N-1]*dt;
t = [t;ti'];
y = [y;yi(:,1:p_c.N)'];
u = [u;ui(:,1:p_c.N)'];
y_e = [y_e; y_est'];
t_e = [t_e; (i*p_c.N)*dt];
e_e = [e_e; e_est];
endfor
sample_interval = (time-tick)/(I*p_c.N)
## Put data on file (so can use for identification)
filename = sprintf("%s_ident_data.dat",Name);
eval(sprintf("save -ascii %s t y u",filename));
## Plot
gset nokey
title("");
boxed=0;
monochrome=1;
grid;
xlabel("t");
ylabel("y");
figure(1);plot(t,y, t_e,y_e,"+");
# figfig("OL_y","eps",boxed,monochrome);
ylabel("u");
figure(2);plot(t,u);
# figfig("OL_u","eps",boxed,monochrome);
ylabel("e");
figure(3);plot(t_e,e_e);
endfunction
|