Overview
Comment:Added e_e to argout
Tidy
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 2785debac86e22643fca9dc92f7cfb147de2787d24235f786c765bfc3e02bd95
User & Date: gawthrop@users.sourceforge.net on 2003-06-26 07:52:24
Other Links: branch diff | manifest | tags
Context
2003-06-26
08:01:46
Added comments
Correct observer pole computation
check-in: 979e3f22f3 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
07:52:24
Added e_e to argout
Tidy
check-in: 2785debac8 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
2003-06-25
12:46:06
Input only changed one per print interval
No effect if stepfactor=1
Fixes bug when _input.m is compiled using -stdin option
and stepfactor>1
check-in: 303b599a78 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes

Modified mttroot/mtt/lib/control/PPP/ppp_lin_run.m from [33262152e0] to [13e6d6b016].

1

2
3

4
5
6
7
8
9
10

1
2

3
4
5
6
7
8
9
10
-
+

-
+







function [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o)
function [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o)

  ## usage:  [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o);
  ## usage:  [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o);
  ##
  ## 
  ## Linear closed-loop PPP of lego system (and simulation)
  ##
  ## Name: Name of system (in mtt terms)
  ## Simulate = 0: real thing
  ## Simulate = 1: simulate
32
33
34
35
36
37
38
39

40
41
42
43

44
45
46
47

48
49
50

51
52
53
54



55
56

57
58
59
60
61
62
63
64


65
66
67
68
69
70
71



















72
73

74
75
76
77

78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110


111
112
113
114

115
116
117
118
119
120
121
122









123
124
125
126
127
128
129
130
131
132


133
134

135
136
137
138
139
140
141

142
143
144





145
146
147
148
149
150
151


152
153
154
155
156
157
158
159
160
161
162

163
164
165
166


167
168

169
170
171
172
173
174
175

176
177
178
179
180
181
182
183

184


185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204



205

206
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46

47
48
49

50




51
52
53
54

55
56
57
58
59
60
61


62
63
64






65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85




86
87
88





89
90
91
92
93
94
95
96


97
98
99
100



101
102
103
104
105
106
107
108
109


110
111
112
113
114

115
116
117
118
119
120
121


122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


139
140
141

142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179


180
181


182
183




184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216

217
218
219
220
221
222







-
+



-
+



-
+


-
+
-
-
-
-
+
+
+

-
+






-
-
+
+

-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

-
+
-
-
-
-
+


-
-
-
-
-
+







-
-
+



-
-
-









-
-
+
+



-
+






-
-
+
+
+
+
+
+
+
+
+








-
-
+
+

-
+






-
+



+
+
+
+
+







+
+










-
+


-
-
+
+
-
-
+

-
-
-
-

-
+








+

+
+
















-
+


-
+
+
+

+

  endif
  
  if nargin<3
    ControlType = 2;
  endif
  
  if nargin<4
    w = 1;
    w = ones(n_y,1);;
  endif
  
  if nargin<5
    p_c.N = 10;
    x_0 = zeros(n_x,1);
  endif
  
  if nargin<6
    p_o.sigma = 0.001;
    p_c.N = 5;
  endif


  if nargin<7
#   if !struct_contains(p_c,"N")
#     p_c.N = 10;			# Number of small samples per large sample
#   endif
  
    p_o.sigma = 1e-1;
  endif

  if !struct_contains(p_c,"delta_ol")
    p_c.delta_ol = 1.0;	# OL sample interval
    p_c.delta_ol = 0.5;	# OL sample interval
  endif
  
  if !struct_contains(p_c,"T")
    p_c.T = 5.0;			# Last time point.
  endif
  
  if !struct_contains(p_c,"A_w")
    p_c.A_w = 0;
  if !struct_contains(p_c,"Method")
    p_c.Method = "lq";
  endif
  
  if !struct_contains(p_c,"A_u")
    p_c.N_u = 3;
    a_u = 2.0;
    p_c.A_u = ppp_aug(p_c.A_w,laguerre_matrix(p_c.N_u-1,a_u));
  endif

  if struct_contains(p_c,"Method")
    if strcmp(p_c.Method,"lq") 
      p_c.Q = eye(n_y);
      p_c.R = (0.5^2)*eye(n_u);
      p_c.N_u = n_x;
    elseif strcmp(p_c.Method,"original");
      if !struct_contains(p_c,"A_w")
	p_c.A_w = 0;
      endif
      if !struct_contains(p_c,"A_u")
	p_c.N_u = n_x;
	a_u = 1.0;
	p_c.A_u = laguerre_matrix(p_c.N_u,a_u)
      endif
    else
      error(sprintf("Method %s not recognised", p_c.Method));
    endif
  endif
  
  if !struct_contains(p_c,"Method")
  if !struct_contains(p_o,"x_0")
    p_c.Method = "lq"; 
    p_c.Q = eye(n_y);
    p_c.R = (0.1^2)*eye(n_u);
    p_c.N_u = n_x;
    p_o.x_0 = zeros(n_x,1);
  endif
  
  [p_c.N_u,M_u] = size(p_c.A_u);
  if (p_c.N_u<>M_u)
    error("A_u must be square");
  endif
  

  ## Check w.
  [n_w,m_w] = size(w);
  if ( (n_w<>n_y) || (m_w<>1) )
    error(sprintf("ppp_lin_run: w must a column vector with %i elements",n_y));
  endif
  
  ## Initialise
  x_0 = zeros(n_x,1);
  x_est = x_0;
  x_est = p_o.x_0;

  ## Initilise simulation state
  x = x_0;
##x(2) = 0.2;		
		#   x(2) = y_0(1);
				#   x(4) = y_0(2);

  if ControlType==0		# Step input
    I = 1;			# 1 large sample
    p_c.delta_ol = p_c.T	# I
    K_w = zeros(p_c.N_u,n_y);
    K_w(1,1) = 1;
    K_w(2,1) = -1;
    K_x = zeros(p_c.N_u,n_x);
    U = K_w*w;			# Initial control U
  else				# PPP control
    I = ceil(p_c.T/p_c.delta_ol); # Number of large samples
  else
    I = ceil(p_c.T/p_c.delta_ol) # Number of large samples
    if strcmp(p_c.Method, "original")
      tau = [10:0.1:11]*(2/a_u);	# Time horizons
      [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
    elseif strcmp(p_c.Method, "lq")
    elseif strcmp(p_c.Method, "lq") # LQ design
      tau = [0:0.001:1.0]*5; # Time horizons
      [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,p_c.A_u] \
	  = ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R);
    else
      error(sprintf("Method %s not recognised", p_c.Method));
    endif
    
    U = K_w*w;			# Initial control U

    ##Sanity check A_u
    [p_c.N_u,M_u] = size(p_c.A_u);
    if (p_c.N_u<>M_u)
      error("A_u must be square");
    endif
    
    
    U = K_w*w			# Initial control U

    ## Checks
    [ol_zeros, ol_poles] = sys2zp(sys)
    cl_poles = eig(A - B*k_x)
  endif

  ## Observer design
  Ad = expm(A*p_c.delta_ol);		# Discrete-time transition matrix
  if (ControlType==2)
    G = eye(n_x);			# State noise gain 
  if (ControlType==2)		# 
    G = eye(n_x);		# State noise gain 
    sigma_x = eye(n_x);		# State noise variance
    Sigma = p_o.sigma*eye(n_y);	# Measurement noise variance
    Sigma = p_o.sigma*eye(n_y)	# Measurement noise variance
    
    L = dlqe(Ad,G,C,sigma_x,Sigma)
  else
    L = zeros(n_x,n_y);
  endif
  
  obs_poles = eig(Ad-L*C)
  obs_poles = eig(Ad-L*C);

  ## Short sample interval
  dt = p_c.delta_ol/p_c.N;

  ## Write the include file for the real-time function
  disp("Writing Ustar.h");
  ppp_ustar2h(ppp_ustar (p_c.A_u, n_u, [0:dt:p_c.delta_ol], 0,0)); 


  ## Control loop
  y = [];
  u = [];
  t = [];
  y_e = [];
  t_e = [];
  e_e = [];
  tick = time;
  for i=1:I
    i
    if Simulate
      t_sim = [0:p_c.N]*dt;
      [yi,ui,xsi] = ppp_ystar (A,B,C,D,x,p_c.A_u,U,t_sim);
      x = xsi(:,p_c.N+1);
      y_now = yi(:,p_c.N+1);
    else			# The real thing
      to_rt(U');		# Send U
      data = from_rt(p_c.N);	# Receive data
      [yi,ui] = convert_data(data);
      [yi,ui] = convert_data(data); 
      y_now = yi(:,p_c.N);	# Current output
    endif
    


    ## Observer
    ## Zero-gain (OL) observer with state resetting
    [x_est y_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
    [x_est y_est e_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
    
				#       ## Reset states
				#       x_est(2) = y_now(1);	# Position
				#       x_est(4) = y_now(2)/g_s;	# Angle 
    
    ##Control
    U = K_w*w- K_x*x_est;
    U = K_w*w - K_x*x_est

    ## Save
    ti  = [(i-1)*p_c.N:i*p_c.N-1]*dt; 
    t = [t;ti'];
    y = [y;yi(:,1:p_c.N)'];
    u = [u;ui(:,1:p_c.N)'];
    y_e = [y_e; y_est'];
    t_e = [t_e; (i*p_c.N)*dt];
    e_e = [e_e; e_est];
  endfor
  
  sample_interval = (time-tick)/(I*p_c.N)

  ## Put data on file (so can use for identification)
  filename = sprintf("%s_ident_data.dat",Name);
  eval(sprintf("save -ascii %s t y u",filename));


  ## Plot
  gset nokey
  title("");
  boxed=0;
  monochrome=1;
  grid;
  xlabel("t");

  ylabel("y");
  figure(1);plot(t,y, t_e,y_e,"+");
 				#  figfig("OL_y","eps",boxed,monochrome);

  ylabel("u");
  figure(2);plot(t,u);
 				#  figfig("OL_u","eps",boxed,monochrome);

  ylabel("e");
  figure(3);plot(t_e,e_e);


endfunction


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]