Overview
Comment:Compatible with Octave 2.1.57
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 217980763901b91095ac74809f7fb9c0edd8e16d622a40134be2e030ea041678
User & Date: gawthrop@users.sourceforge.net on 2004-08-09 14:44:41
Other Links: branch diff | manifest | tags
Context
2004-08-09
14:47:28
Changed arg to args to avoid strange octave bug check-in: e0b4cd14a7 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
14:44:41
Compatible with Octave 2.1.57 check-in: 2179807639 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
2004-08-05
09:07:51
Sorts by type:name within categories: ports, components, 0, 1 check-in: 649ef6492a user: geraint@users.sourceforge.net tags: origin/master, trunk
Changes

Modified mttroot/mtt/lib/control/PPP/ppp_ex15.m from [d1ae59f7c7] to [f570a84dcf].

38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53







+
-
+







  x_0 = zeros(n_x,1);		# Initial state


  ## Closed-loop intermittent solution
  Delta_ol = 0.5		# Intermittent time

  disp("Intermittent control simulation");
  R=1;P=0;
  [T,y,u] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, \
  [T,y,u] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q,R,P, \
			  [],[],[],[], \
			  [],[],[],[],W,x_0,Delta_ol);
size(T)
  ## Exact closed-loop
  disp("Exact closed-loop");
  [k_x,k_w] = ppp_lin (A,B,C,D,A_u,A_w,t,Q)
  [ye,Xe] = ppp_sm2sr(A-B*k_x, B, C, D, T, k_w*W, x_0); # Compute Closed-loop control

Modified mttroot/mtt/lib/control/PPP/ppp_inflate.m from [7743bb793c] to [c4fc3a116e].

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25







-
+








  if N<M
    error("A_v must have at least as many rows as columns");
  endif
  
  n = N/M;			# Number of matrix elements in A_v

  if round(n)<>n
  if round(n)!=n
    error("A_v must be a column vector of square matrices");
  endif
  
  A_m = [];
  for i = 1:n
    A_m = ppp_aug(A_m,ppp_extract(A_v,i));
  endfor

Modified mttroot/mtt/lib/control/PPP/ppp_lin.m from [4162496ee0] to [2f56086151].

165
166
167
168
169
170
171
172


173
174
175
176
177
178
179
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180







-
+
+







    J_ux = J_ux + (QQ .* y_u(:,i:n_y:n_yu)') * y_x(:,i:n_y:n_yx);
    QQ = ones(n_x,1)*Q(i,:);	# Resize Q
    J_xx = J_xx + (QQ .* y_x(:,i:n_y:n_yx)') * y_x(:,i:n_y:n_yx);
  endfor

  ## Input weighting (scalar for the moment)
  if (n_u>1)
    warning("Sorry, cant do n_u>1 just now");
    warning("Sorry, cant do n_u>1 just now: exiting");
    return
  endif

  ## Scale R
  R = R*dt;			# Scale to give correct units
  for i = 1:m_t
    Ust = Us(i,:);
    J_uu = J_uu + Ust'*R*Ust;

Modified mttroot/mtt/lib/control/PPP/ppp_lin_quad.m from [b791777adb] to [56182147a4].

1
2

3
4
5

6
7
8
9
10





11


12
13
14
15
16
17
18
1

2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

-
+


-
+





+
+
+
+
+

+
+







function [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] = \
      ppp_lin_quad (A,B,C,D,tau,Q,R)
      ppp_lin_quad (A,B,C,D,tau,Q,R,A_e)

  ## usage:[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] =
  ## ppp_lin_quad (A,B,C,D,tau,Q,R)
  ## ppp_lin_quad (A,B,C,D,tau,Q,R[,A_e])
  ##
  ## 

  ## Steady-state Linear Quadratic solution
  ## using Algebraic Riccati equation (ARE)

  if nargin<8
    A_e = [];
  endif
  
  [P,A_u,A_w] = ppp_are (A,B,C,D,Q,R);

  A_u = ppp_aug(A_u,A_e);

  ## PPP solution
  [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] = \
      ppp_lin(A,B,C,D,A_u,A_w,tau,Q,R,P);


endfunction

Modified mttroot/mtt/lib/control/PPP/ppp_open2closed.m from [f6b3aefde7] to [06ac18219c].

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28







-
+







  ## 	$Id$	


  ## Check sizes
  n_o = is_square(A_u);
  n_c = is_square(A_c);

  if (n_o==0)||(n_c==0)||(n_o<>n_c)
  if (n_o==0)||(n_c==0)||(n_o!=n_c)
    error("A_u and A_c must be square and of the same dimension");
  endif

  [n_u,n_x] = size(k_x);

  ## Defaults
  if nargin<4

Modified mttroot/mtt/lib/control/PPP/ppp_qp_sim.m from [3bd70b9dea] to [6333ae0d35].

60
61
62
63
64
65
66
67
68


69
70
71
72
73
74
75
60
61
62
63
64
65
66


67
68
69
70
71
72
73
74
75







-
-
+
+







  if Delta_ol>0			# Intermittent control
    T_ol = 0:dt:Delta_ol;	# Create the open-loop time vector
  else
    T_ol = [0,dt];
    Delta_ol = dt;
  endif
  t_last = t(length(t));
  T_cl = 0:Delta_ol:t_last-Delta_ol; # Closed-loop time vector
  T = 0:dt:t_last;		# Overall time vector
  T_cl = 0:Delta_ol:2*t_last-Delta_ol; # Closed-loop time vector
  T = 0:dt:2*t_last;		# Overall time vector
 
  ## Lengths thereof
  n_Tcl = length(T_cl);
  n_ol = length(T_ol);
  n_T = length(T);

  ## Expand W with constant last value or truncate
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114







-
+







  Iterations = [];
  du = [];
  J = [];
  tick= time;

  ## disp("Simulating ...");
  for t=T_cl			# Outer loop at Delta_ol

    printf("%g\r",t);
    ##disp(sprintf("Time %g", t));
    ## Output constraints
    [Gamma_y,gamma_y] = ppp_output_constraints  (A,B,C,D,x,A_u,Tau_y,Min_y,Max_y,Order_y);
    
    ## Composite constraints 
    Gamma = [Gamma_u; Gamma_y];
    gamma = [gamma_u; gamma_y];

Modified mttroot/mtt/lib/control/PPP/ppp_ystar.m from [34d0435ae4] to [17c1b7c256].

20
21
22
23
24
25
26
27
28








29
30
31
32
33
34
35
20
21
22
23
24
25
26


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41







-
-
+
+
+
+
+
+
+
+







  ## xs          x*, one column for each time tau 
  ## xu          x_u, one column for each time tau 
  ## AA          The composite system matrix
  
  ## Copyright (C) 1999 by Peter J. Gawthrop
  ## 	$Id$	


  [n_x,n_u,n_y] = abcddim(A,B,C,D); # System dimensions
  if (size(A)>0)
    [n_x,n_u,n_y] = abcddim(A,B,C,D); # System dimensions
  else
    n_x = 0;
    n_y = 0;
    n_u = 0;
  endif
  
  no_system = n_x==0;

  [n,m] = size(A_u);		# Size of composite A_u matrix
  square = (n==m);		# Is A_u square?
  n_U = m;			# functions per input

  
113
114
115
116
117
118
119

120





121
122
123
124
125
126
127
128
129
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140







+
-
+
+
+
+
+









  n_xx = length(xx_0);		# Length of composite state

  ## Compute the star variables
  for t=tau
    xxt = expm(AA*t)*xx_0;	# Composite state
    xst = xxt(1:n_x);		# x star
    xut = xxt(n_x+1:n_xx);	# x star
    if length(C)>0
    yst = C*xst;		# y star
      yst = C*xst;		# y star
    else
      yst = [];
    endif
    
    ust = Utilde*xut;		# u star

    xs = [xs xst];		# x star
    xu = [xu xut];		# x star
    ys = [ys yst];		# y star
    us = [us ust];		# u star
  endfor

endfunction


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]