Overview
Comment: | Restuctured to be more logical. Data is now in columns to be compatible with MTT. |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
0ea7b213e72c3dbe876fdee0f3027988 |
User & Date: | gawthrop@users.sourceforge.net on 2001-04-04 08:36:25 |
Other Links: | branch diff | manifest | tags |
Context
2001-04-04
| ||
10:05:38 | Reresentation for system identification for ppp check-in: 34531ed402 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
08:36:25 |
Restuctured to be more logical. Data is now in columns to be compatible with MTT. check-in: 0ea7b213e7 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
01:03:01 | Fixed elimination of 0 in xxx(0...) when ... does not start with a digit. check-in: 58203f3d83 user: geraint@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_optimise.m from [aff901223d] to [55529a32e0].
|
| | > > | | | | | | > > > > > > > > | | | > > > > > > > > > > > > > > > > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | function [par,Par,Error,Y,iterations] = \ ppp_optimise(system_name,x_0,par_0,simpar,u,y_0,free,extras); ## Levenberg-Marquardt optimisation for PPP/MTT ## Usage: [par,Par,Error,Y,iterations] = ppp_optimise(system_name,x_0,par_0,simpar,u,y_0,free[,extras]); ## system_name String containing system name ## x_0 Initial state ## par_0 Initial parameter vector estimate ## simpar Simulation parameters: ## .first first time ## .dt time increment ## .stepfactor Euler integration step factor ## u System input (column vector, each row is u') ## y_0 Desired model output ## free one row for each adjustable parameter ## first column parameter indices ## second column corresponding sensitivity indices ## extras (opt) optimisation parameters ## .criterion convergence criterion ## .max_iterations limit to number of iterations ## .v Initial Levenberg-Marquardt parameter ###################################### ##### Model Transformation Tools ##### ###################################### ############################################################### ## Version control history ############################################################### ## $Id$ ## $Log$ ## Revision 1.1 2000/12/28 11:58:07 peterg ## Put under CVS ## ############################################################### ## Copyright (C) 1999,2000 by Peter J. Gawthrop sim_command = sprintf("%s_ssim(x_0,par,simpar,u,i_s)", system_name) ## Extract indices i_t = free(:,1); # Parameters i_s = free(:,2)'; # Sensitivities if nargin<9 extras.criterion = 1e-5; extras.max_iterations = 10; extras.v = 1e-5; extras.verbose = 0; endif [n_data,n_y] = size(y_0); n_th = length(i_s); error_old = inf; error_old_old = inf; error = 1e50; reduction = 1e50; par = par_0; |
︙ | ︙ | |||
41 42 43 44 45 46 47 | while (abs(reduction)>extras.criterion)&&\ (abs(error)>extras.criterion)&&\ (iterations<extras.max_iterations) iterations = iterations + 1; # Increment iteration counter | | | | | | | < | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | while (abs(reduction)>extras.criterion)&&\ (abs(error)>extras.criterion)&&\ (iterations<extras.max_iterations) iterations = iterations + 1; # Increment iteration counter [y,y_par] = eval(sim_command); # Simulate ##Evaluate error, cost derivative J and cost second derivative JJ error = 0; J = zeros(n_th,1); JJ = zeros(n_th,n_th); for i = 1:n_y E = y(:,i) - y_0(:,i); # Error in ith output error = error + (E'*E); # Sum the squared error over outputs y_par_i = y_par(:,i:n_y:n_y*n_th); # sensitivity function (ith output) J = J + y_par_i'*E; # Jacobian JJ = JJ + y_par_i'*y_par_i; # Newton Euler approx Hessian endfor if iterations>1 # Adjust the Levenberg-Marquardt parameter reduction = error_old-error; predicted_reduction = 2*J'*step + step'*JJ*step; r = predicted_reduction/reduction; if (r<0.25)||(reduction<0) |
︙ | ︙ | |||
79 80 81 82 83 84 85 | printf(" ratio: %g\n", r); printf(" L-M param: %g\n", v); printf(" parameters: "); for i_th=1:n_th printf("%g ", par(i_t(i_th))); endfor printf("\n"); | < < < < | < < < < < < | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | printf(" ratio: %g\n", r); printf(" L-M param: %g\n", v); printf(" parameters: "); for i_th=1:n_th printf("%g ", par(i_t(i_th))); endfor printf("\n"); endif if reduction<0 # Its getting worse par(i_t) = par(i_t) + step; # rewind parameter error = error_old; # rewind error error_old = error_old_old; # rewind old error if extras.verbose printf(" Rewinding ....\n"); endif endif endif ## Compute step using pseudo inverse JJL = JJ + v*eye(n_th); # Levenberg-Marquardt term step = pinv(JJL)*J; # Step size par(i_t) = par(i_t) - step; # Increment parameters error_old_old = error_old; # Save old error error_old = error; # Save error ##Some diagnostics Error = [Error error]; # Save error Par = [Par par]; # Save parameters Y = [Y y]; # Save output endwhile endfunction |