Overview
Comment:Initial revision
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 0da63e7c3fa0167ec1153a66ed0733eb799a0fe227194f6e825d7dd9146c9329
User & Date: gawthrop@users.sourceforge.net on 1998-07-21 15:25:50
Other Links: branch diff | manifest | tags
Context
1998-07-21
16:13:20
Sorted out errors in the equations check-in: e479e36883 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
15:25:50
Initial revision check-in: 0da63e7c3f user: gawthrop@users.sourceforge.net tags: origin/master, trunk
15:18:18
Initial revision check-in: 101c45bcc1 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes

Added mttroot/mtt/lib/examples/Thermal/ThermodynamicCycles/DieselCycle/DieselCycle_desc.tex version [ea96ae646d].










































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
% Verbal description for system DieselCycle (DieselCycle_desc.tex)
% Generated by MTT on Thu Dec 4 15:59:55 GMT 1997.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% Revision 1.1  1997/12/09  12:30:26  peterg
% Initial revision
%
% Revision 1.1  1997/12/08  09:37:04  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   The acausal bond graph of system \textbf{DieselCycle} is
   displayed in Figure \Ref{DieselCycle_abg} and its label
   file is listed in Section \Ref{sec:DieselCycle_lbl}.
   The subsystems are listed in Section \Ref{sec:DieselCycle_sub}.


The Diesel cycle is a simple closed thermodynamic cycle with four parts:
\begin{enumerate}
\item Isentropic compression
\item Heating at constant pressure
\item Isentropic expansion
\item Cooling at constant volume
\end{enumerate}

The subsystem \textbf{Cycle} (Section \Ref{sec:Cycle}) is a two-port
component describing an ideal gas. It has two energy ports which, with
integral causality correspond to
\begin{enumerate}
\item Entropy flow in; temperature out
\item Volume rate of change in; pressure out
\end{enumerate}

In contast to the Otto cycle (see Table
\Ref{tab:cycles} where each table entry gives the causality on the
heat and work ports respectively). The ideal Diesel cycle has
derivative causality on the {\bf [Work]} port for one part of the
cycle.

To avoid this causality change, the Diesel cycle is approximated by
applying the volume change from a pressure source via a resistance
{\bf R} component. During the {\em heat injection\/} part of the
cycle, the resistance parameter $r\approx 0$, but during the other parts of
the cycle, the resistance parameter $r\approx \inf$.

The simulation parameters appear in Section
\Ref{sec:DieselCycle_numpar.txt}. The results are plotted against time
as follows:
\begin{itemize}
\item Volume (Figure \Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-V})
\item Pressure (Figure
\Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-P})
\item Entropy (Figure \Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-S})
\item Temperature (Figure
\Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-T})
\end{itemize}

These values are replotted as the standard PV and TS diagrams in
Figures
\Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-V:DieselCycle-cycle-P}
and
\Ref{fig:DieselCycle_odeso.ps-DieselCycle-cycle-S:DieselCycle-cycle-T}
respectively.





Added mttroot/mtt/lib/examples/Thermal/ThermodynamicCycles/DieselCycle/DieselCycle_lbl.txt version [af8cc4d544].



































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
%SUMMARY DieselCycle:a simple closed thermodynamic cycle
%DESCRIPTION The Diese cycle is a simple closed thermodynamic cycle
%DESCRIPTION with four parts:
%DESCRIPTION o Isentropic compression
%DESCRIPTION o Heating at constant pressure
%DESCRIPTION o Isentropic expansion
%DESCRIPTION o Cooling at constant volume
  

%% Label file for system DieselCycle (DieselCycle_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type R
	r		lin	flow,r

% Component type SS
	Heat	SS	internal,external
	Work	SS	external,internal


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]