Overview
Comment:Replaced Euler integration by exact solution via ppp_ystar.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 002f042ec01009af814b41f1900f47d7c8e8d60bbf89be59e9d45ff6e26f98e8
User & Date: gawthrop@users.sourceforge.net on 2002-08-27 12:33:40
Other Links: branch diff | manifest | tags
Context
2002-08-27
16:09:01
Added port_name to error message when multiple bonds are near a port. check-in: dd777940a7 user: geraint@users.sourceforge.net tags: origin/master, trunk
12:33:40
Replaced Euler integration by exact solution via ppp_ystar. check-in: 002f042ec0 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
10:48:29
Corrected documentation check-in: d0e482a408 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes

Modified mttroot/mtt/lib/control/PPP/ppp_qp_sim.m from [442bf78425] to [3484a100c1].

1

2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
-
+







function [T,y,u,Iterations] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,Delta_ol,mu,movie)
function [T,y,u,X,Iterations] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,Delta_ol,mu,movie)

  ## usage: [T,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,movie)
  ## Needs documentation - see ppp_ex11 for example of use.
  ## OUTPUTS
  ## T: Time vector
  ## y,u,J output, input and cost

53
54
55
56
57
58
59
60

61
62

63
64
65
66
67

68

69

70
71
72
73
74
75
76




77
78
79
80
81
82
83
53
54
55
56
57
58
59

60
61

62
63
64

65
66
67
68
69
70
71
72
73
74




75
76
77
78
79
80
81
82
83
84
85







-
+

-
+


-


+

+

+



-
-
-
-
+
+
+
+







  ## Set up various time vectors
  dt = t(2)-t(1);		# Time increment

  ## Make sure Delta_ol is multiple of dt
  Delta_ol = floor(Delta_ol/dt)*dt;

  if Delta_ol>0			# Intermittent control
    T_ol = 0:dt:Delta_ol-dt;	# Create the open-loop time vector
    T_ol = 0:dt:Delta_ol;	# Create the open-loop time vector
  else
    T_ol = 0;
    T_ol = [0,dt];
    Delta_ol = dt;
  endif
  
  T_cl = 0:Delta_ol:t(length(t))-Delta_ol; # Closed-loop time vector
  n_Tcl = length(T_cl);
  n_ol = length(T_ol);
  

  Ustar_ol = ppp_ustar(A_u,n_u,T_ol); # U* in the open-loop interval

  [n,m] = size(Ustar_ol);
  n_U = m/length(T_ol);		# Determine size of each Ustar

  ## Discrete-time system
  csys = ss2sys(A,B,C,D);
  dsys = c2d(csys,dt);
  [Ad, Bd] = sys2ss(dsys);
#   ## Discrete-time system
#   csys = ss2sys(A,B,C,D);
#   dsys = c2d(csys,dt);
#   [Ad, Bd] = sys2ss(dsys)

  x = x_0;			# Initialise state

  ## Initialise the saved variable arrays
  X = [];
  u = [];
  Iterations = [];
91
92
93
94
95
96
97
98

99
100

101
102
103
104
105

106
107
108

109
110
111
112
113
114

115
116
117
118



119
120
121
122
123
124
125
126
127




128
129
130
131
132
133
134
93
94
95
96
97
98
99

100
101

102
103
104
105
106

107



108




109

110




111
112
113

114







115
116
117
118
119
120
121
122
123
124
125







-
+

-
+




-
+
-
-
-
+
-
-
-
-

-
+
-
-
-
-
+
+
+
-

-
-
-
-
-
-
-
+
+
+
+







    ## Output constraints
    [Gamma_y,gamma_y] = ppp_output_constraint  (A,B,C,D,x,A_u,Tau_y,Min_y,Max_y,Order_y);
    
    ## Composite constraints 
    Gamma = [Gamma_u; Gamma_y];
    gamma = [gamma_u; gamma_y];
    
    ## Compute U(t)
    ## Compute U(t) via QP optimisation
    [uu, U, iterations] = ppp_qp (x,W,J_uu,J_ux,J_uw,Us0,Gamma,gamma,mu); # Compute U
 

    ## Compute the cost (not necessary but maybe interesting)
#    [J_t] = ppp_cost (U,x,W,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww); # cost
#    J = [J J_t];

    ## Simulation loop
    ## OL Simulation (exact)
    i_ol = 0;
    for t_ol=T_ol		# Inner loop at dt

    [ys,us,xs] = ppp_ystar (A,B,C,D,x,A_u,U,T_ol);
      ## Compute ol control
      i_ol = i_ol+1;
      range = (i_ol-1)*n_U + 1:i_ol*n_U; # Extract current U*
      ut = Ustar_ol(:,range)*U;	# Compute OL control (U* U)

      ## Simulate the system
    ## Save values (discarding final ones)
      i = i+1;
      X = [X x];		# Save state
      u = [u ut];		# Save input
      Iterations = [Iterations iterations]; # Save iteration count
    X = [X xs(:,1:n_ol-1)];			# save state
    u = [u us(:,1:n_ol-1)];			# save input
    Iterations = [Iterations iterations*ones(1,n_ol-1)];
      x = Ad*x + Bd*ut;	# System

#       if movie			# Plot the moving horizon
# 	tau = T(1:n_T-i);	# Tau with moving horizon
# 	tauT = T(i+1:n_T);	# Tau with moving horizon + real time
# 	[ys,us,xs,xu,AA] = ppp_ystar (A,B,C,D,x,A_u,U,tau); # OL response
# 	plot(tauT,ys, tauT(1), ys(1), "*")
#       endif
    endfor
    ## Final values
    x = xs(:,n_ol);		# Final state
    ut = us(:,n_ol);		# Final control

  endfor
  
  ## Save the last values
  X = [X x];		# Save state
  u = [u ut];		# Save input
  Iterations = [Iterations iterations]; # Save iteration count


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]