function [T,y,u,X,Iterations] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q,\ Tau_u,Min_u,Max_u,Order_u, \ Tau_y,Min_y,Max_y,Order_y, \ W,x_0,Delta_ol,mu,test,movie) ## usage: [T,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,movie) ## Needs documentation - see ppp_ex11 for example of use. ## OUTPUTS ## T: Time vector ## y,u,J output, input and cost ## Copyright (C) 1999 by Peter J. Gawthrop ## $Id$ if nargin<19 # No intermittent control Delta_ol = 0; endif if nargin<20 # Mu mu = 0; endif if nargin<21 test=0 endif if nargin<22 # No movie movie = 0; endif test = test ## Check some sizes [n_x,n_u,n_y] = abcddim(A,B,C,D); [n_x0,m_x0] = size(x_0); if (n_x0 != n_x)||(m_x0 != 1) error(sprintf("Initial state x_0 must be %ix1 not %ix%i",n_x,n_x0,m_x0)); endif ## Input constraints [Gamma_u, gamma_u] = ppp_input_constraints(A_u,Tau_u,Min_u,Max_u); ## Output constraints [Gamma_y,gamma_y] = ppp_output_constraints(A,B,C,D,x_0,A_u,Tau_y,Min_y,Max_y,Order_y); ## Composite constraints - t=0 Gamma = [Gamma_u; Gamma_y]; gamma = [gamma_u; gamma_y]; ## Design the controller ## disp("Designing controller"); [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] = ppp_lin (A,B,C,D,A_u,A_w,t,Q); ## Set up various time vectors dt = t(2)-t(1); # Time increment ## Make sure Delta_ol is multiple of dt Delta_ol = floor(Delta_ol/dt)*dt; if Delta_ol>0 # Intermittent control T_ol = 0:dt:Delta_ol; # Create the open-loop time vector else T_ol = [0,dt]; Delta_ol = dt; endif t_last = t(length(t)); T_cl = 0:Delta_ol:t_last-Delta_ol; # Closed-loop time vector T = 0:dt:t_last; # Overall time vector ## Lengths thereof n_Tcl = length(T_cl); n_ol = length(T_ol); n_T = length(T); ## Expand W with constant last value or truncate [n_W,m_W] = size(W); if m_W>n_T W = W(:,1:n_T); else W = [W W(:,m_W)*ones(1,n_T-m_W+1)]; endif ## Compute U* Ustar_ol = ppp_ustar(A_u,n_u,T_ol); # U* in the open-loop interval [n,m] = size(Ustar_ol); n_U = m/length(T_ol); # Determine size of each Ustar # ## Discrete-time system # csys = ss2sys(A,B,C,D); # dsys = c2d(csys,dt); # [Ad, Bd] = sys2ss(dsys) x = x_0; # Initialise state ## Initialise the saved variable arrays X = []; u = []; Iterations = []; du = []; J = []; tick= time; ## disp("Simulating ..."); for t=T_cl # Outer loop at Delta_ol ##disp(sprintf("Time %g", t)); ## Output constraints [Gamma_y,gamma_y] = ppp_output_constraints (A,B,C,D,x,A_u,Tau_y,Min_y,Max_y,Order_y); ## Composite constraints Gamma = [Gamma_u; Gamma_y]; gamma = [gamma_u; gamma_y]; ## Current Setpoint value w = W(:,floor(t/dt)+1); ## Compute U(t) via QP optimisation [uu, U, iterations] = ppp_qp (x,w,J_uu,J_ux,J_uw,Us0,Gamma,gamma,mu,test); # Compute U ## Compute the cost (not necessary but maybe interesting) # [J_t] = ppp_cost (U,x,W,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww); # cost # J = [J J_t]; ## OL Simulation (exact) [ys,us,xs] = ppp_ystar (A,B,C,D,x,A_u,U,T_ol); ## Save values (discarding final ones) X = [X xs(:,1:n_ol-1)]; # save state u = [u us(:,1:n_ol-1)]; # save input Iterations = [Iterations iterations*ones(1,n_ol-1)]; ## Final values x = xs(:,n_ol); # Final state ut = us(:,n_ol); # Final control endfor ## Save the last values X = [X x]; # Save state u = [u ut]; # Save input Iterations = [Iterations iterations]; # Save iteration count tock = time; Elapsed_Time = tock-tick; y = C*X + D*u; # System output endfunction