function [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha,View) ## Usage: [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha) ## system_name String containg system name ## y_s actual system output ## theta_0 initial parameter estimate ## free Indices of the free parameters within theta_0 ## weight Weighting function - same dimension as y_s ## method "time" or "freq" ## criterion convergence criterion ## max_iterations limit to number of iterations ## alpha Optimisation gain parameter ## Copyright (C) 1999 by Peter J. Gawthrop if nargin<4 method="time"; endif N = length(theta_0); if nargin<5 free = [1:N]; endif if nargin<6 weight = ones(size(y_s)); endif if nargin<7 criterion = 1e-7; endif if nargin <8 max_iterations = 25; endif if nargin<9 alpha = 0.1; endif if nargin<10 View = 0; endif if (!strcmp(method,"time"))&&(!strcmp(method,"freq")) error("method must be either time or freq") endif [n_data,n_y] = size(y_s); n_th = length(free); error_old = inf; error=1e50; theta = theta_0; Theta = []; Error = []; Y = []; iterations = -1; while (abs(error_old-error)>criterion)&&(iterationscriterion)&&(iterations(error_old+criterion) # Reduce step size and try again factor = 10; disp(sprintf("%2.2f*step",alpha)); error = error_old; # Go back to previous error value error_old = inf; # Don't let it think its converged theta(free) = theta(free) + step; # Reverse step step = alpha*step; # new stepsize else # Recompute step size tol = 1e-5; step = pinv(JJ,tol)*J; # Step size #step = pinv(JJ)*J; # Step size (built in tol) endif theta(free) = theta(free) - step; # Increment parameters endif ## theta endwhile endfunction