function [name,T,y,u,ys,us,J] = ppp_ex19 (ReturnName,n_extra,T_extra) ## usage: [name,T,y,u,ys,us,T1,du,dus] = ppp_ex19 (ReturnName) ## ## PPP example ## $Id$ ## Example name name = "Input constraints with redundant U*"; if (nargin>0)&&(ReturnName==1) return endif if nargin<2 n_extra = 3 endif if nargin<3 T_extra = 2.0 endif ## System A = 1 B = 1 C = 1 D = 0; [n_x,n_u,n_y] = abcddim(A,B,C,D); ## Controller t = [2:0.01:3]; # Time horizon A_w = 0; A_u = diag([0 -6]); A_u = ppp_aug(A_u,laguerre_matrix(n_extra,1/T_extra)) Q = 1; ## Constraints Gamma = []; gamma = []; ## Constraints - u Tau_u = [0 0.1 0.5 1 1.5 2]; Tau_u = 0; one = ones(size(Tau_u)); limit = 1.5; Min_u = -limit*one; Max_u = limit*one; Order_u = 0*one; ## Constraints - y Tau_y = []; one = ones(size(Tau_y)); limit = 1.5; Min_y = -limit*one; Max_y = limit*one; Order_y = 0*one; ## Simulation W=1; x_0 = zeros(n_x,1); ## Constrained - open-loop disp("Control design"); [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw] = ppp_lin (A,B,C,D,A_u,A_w,t); # Unconstrained design [Gamma_u,gamma_u] = ppp_input_constraint (A_u,Tau_u,Min_u,Max_u); Gamma = Gamma_u; gamma = gamma_u; disp("Open-loop simulations"); ## Constrained OL simulation [u,U] = ppp_qp (x_0,W,J_uu,J_ux,J_uw,Us0,Gamma,gamma); T = [0:t(2)-t(1):t(length(t))]; [ys,us] = ppp_ystar (A,B,C,D,x_0,A_u,U,T); ## Unconstrained OL simulation [uu,Uu] = ppp_qp (x_0,W,J_uu,J_ux,J_uw,Us0,[],[]); [ysu,usu] = ppp_ystar (A,B,C,D,x_0,A_u,Uu,T); title("Constrained and unconstrained y*"); xlabel("t"); grid; plot(T,ys,T,ysu) ## Non-linear - closed-loop disp("Closed-loop simulation"); [T1,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, \ Tau_u,Min_u,Max_u,Order_u, \ Tau_y,Min_y,Max_y,Order_y,W,x_0); title("y,y*,u and u*"); xlabel("t"); grid; plot(T1,y,T,ys,T1,u,T,us); endfunction