function [y,x,u,t,p,UU,UU_c,UU_l,t_ppp,t_est] = ppp_nlin_sim (system_name,i_ppp,i_par,A_u,w_s,N_ol,extras) ## usage: [y,x,u,t,p,UU,UU_c,UU_l,t_ppp,t_est] = ppp_nlin_sim (system_name,i_ppp,i_par,A_u,w_s,N_ol,extras) ## ## ## Simulate nonlinear PPP ## Copyright (C) 2000 by Peter J. Gawthrop ## Defaults if nargin<7 extras.U_initial = "zero"; extras.U_next = "continuation"; extras.criterion = 1e-5; extras.max_iterations = 10; extras.v = 0.1; extras.verbose = 0; extras.estimate = 1; endif ## Names s_system_name = sprintf("s%s", system_name); ## System details -- defines simulation within ol interval par = eval(sprintf("%s_numpar;", system_name)); simpar = eval(sprintf("%s_simpar;", system_name)); x_0 = eval(sprintf("%s_state(par);", system_name)); [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name)); ## Sensitivity system details -- defines moving horizon simulation simpars = eval(sprintf("%s_simpar;", s_system_name)); pars = eval(sprintf("%s_numpar;", s_system_name)); ## Times ## -- within opt horizon n_Tau = round(simpars.last/simpars.dt); dtau = simpars.dt; Tau = [0:n_Tau-1]'*dtau; [n_tau,n_w] = size(w_s); tau = Tau(n_Tau-n_tau+1:n_Tau); w = w_s(length(w_s)); # Final value of setpoint ## -- within ol interval n_t = round(simpar.last/simpar.dt); dt = simpar.dt; t_ol = [0:n_t-1]'*dt; T_ol = n_t*dt; ## Create input basis functions [n_U,junk] = size(A_u); ## For moving horizon eA = expm(A_u*dtau); u_star_i = ones(n_U,1); u_star_tau = []; for i = 1:n_Tau u_star_tau = [u_star_tau; u_star_i']; u_star_i = eA*u_star_i; endfor ## and for actual implementation eA = expm(A_u*dt); u_star_i = ones(n_U,1); u_star_t = []; for i = 1:n_t u_star_t = [u_star_t; u_star_i']; u_star_i = eA*u_star_i; endfor if extras.verbose title("U*(tau)") xlabel("tau"); plot(Tau,u_star_tau) title("U*(t)") xlabel("t_ol"); plot(t_ol,u_star_t) endif ## Check number of inputs adjust if necessary if n_u>n_U disp(sprintf("Augmenting inputs with %i zeros", n_u-n_U)); u_star_tau = [u_star_tau; zeros(n_u-n_U, n_Tau)]; u_star_t = [u_star_t; zeros(n_u-n_U, n_t)]; endif if n_u0 [U, U_all, Error, Y] = ppp_nlin(system_name,x_0s,pars,simpars,u_star_tau,w_s,i_ppp,extras); pars(i_ppp(:,1)) = U; # Put final value of U into the parameter vector else Error = []; endif ppp_time = time-tick; t_ppp = [t_ppp;ppp_time]; ## Generate control u_ol = u_star_t*U; # Not used - just for show ## Simulate system over one ol interval par(i_ppp(:,3)) = pars(i_ppp(:,1)); # Update the simulation ppp weights [y_ol,x_ol] = eval(sprintf("%s_sim(x_0, par, simpar, u_star_t);", system_name)); ## Tune parameters/states if (extras.estimate==1) tick = time; par_est = pars(i_par(:,1)); p = [p; par_est']; pars = ppp_optimise(s_system_name,x_0s,pars,simpar,u_star_t,y_ol,i_par,extras); est_time = time-tick; t_est = [t_est;est_time]; endif x_0 = x_ol(n_t+1,:)'; # Extract state for next time y_ol = y_ol(1:n_t,:); # Avoid extra points due to rounding error x_ol = x_ol(1:n_t,:); # Avoid extra points due to rounding error y = [y; y_ol]; x = [x; x_ol]; u = [u; u_ol]; UU = [UU; U']; UU_l = [UU_l; U_l']; UU_c = [UU_c; U_c']; t = [t; t_ol+t_last*ones(n_t,1) ]; t_last = t_last + T_ol; endfor endfunction