function [Gamma,gamma] = ppp_output_constraint (A,B,C,D,x_0,A_u,Tau,Min,Max,Order,i_y) ## usage: [Gamma,gamma] = ppp_output_constraint (A,B,C,D,x_0,A_u,Tau,Min,Max,Order) ## ## Derives the output constraint matrices Gamma and gamma ## For Constraints Min and Max at times Tau ## Initial state x_0 ## Order=0 - output constraints ## Order=1 - output derivative constraints ## etc ## NOTE You can stack up Gamma and gamma matrices for create multi-output constraints. ## Copyright (C) 1999 by Peter J. Gawthrop ## $Id$ ## Sizes [n_x,n_u,n_y] = abcddim(A,B,C,D); # System dimensions [n_U,m_U] = size(A_u); # Number of basis functions [n,n_tau] = size(Tau); # Number of constraint times if n_tau==0 # Nothing to be done Gamma = []; gamma = []; return endif ## Defaults if nargin<10 Order = zeros(1,n_tau); endif if nargin<11 i_y = 1; # First output endif if n != 1 error("Tau must be a row vector"); endif n = length(Min); m = length(Max); o = length(Order); if (n != n_tau)||(m != n_tau)||(o != n_tau) error("Tau, Min, Max and Order must be the same length"); endif ## Compute Gamma Gamma = []; zero_x = zeros(size(x_0)); for i=1:n_U U = zeros(n_U,1); U(i,1) = 1; # Set up U_i y_i = ppp_ystar (A,B,C,D,zero_x,A_u,U,Tau); # Compute y* for ith input for each tau y_i = y_i(i_y,:); # Pluck out output i_y ## Gamma = [Gamma [-y_i';y_i']]; # Put in parts for Min and max Gamma_i = []; if (Min>-inf) Gamma_i = [Gamma_i; -y_i']; # Min part of column endif if (Max-inf) gamma = [gamma; -(Min-y_x)']; endif if (Max