Overview
Comment:Added e_e to argout
Tidy
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 9735dda4ebcd03d878a841be828c41e24eba71b70f948056ee1fa9caa17654b8
User & Date: gawthrop@users.sourceforge.net on 2003-06-26 07:52:24
Other Links: branch diff | manifest | tags
Context
2003-06-26
08:01:46
Added comments
Correct observer pole computation
check-in: 6762457683 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
07:52:24
Added e_e to argout
Tidy
check-in: 9735dda4eb user: gawthrop@users.sourceforge.net tags: origin/master, trunk
2003-06-25
12:46:06
Input only changed one per print interval
No effect if stepfactor=1
Fixes bug when _input.m is compiled using -stdin option
and stepfactor>1
check-in: b473da7248 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes

Modified mttroot/mtt/lib/control/PPP/ppp_lin_run.m from [33262152e0] to [13e6d6b016].

1
2
3
4
5
6
7
8
9
10
function [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o)

  ## usage:  [y,u,t,y_e,t_e] = ppp_lin_run (Name,Simulate,ControlType,w,p_c,p_o);
  ##
  ## 
  ## Linear closed-loop PPP of lego system (and simulation)
  ##
  ## Name: Name of system (in mtt terms)
  ## Simulate = 0: real thing
  ## Simulate = 1: simulate
|

|







1
2
3
4
5
6
7
8
9
10
function [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o)

  ## usage:  [y,u,t,y_e,t_e,e_e] = ppp_lin_run (Name,Simulate,ControlType,w,x_0,p_c,p_o);
  ##
  ## 
  ## Linear closed-loop PPP of lego system (and simulation)
  ##
  ## Name: Name of system (in mtt terms)
  ## Simulate = 0: real thing
  ## Simulate = 1: simulate
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66









67
68
69
70
71




72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121







122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144





145
146
147
148
149
150
151


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184


185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


205

206
  endif
  
  if nargin<3
    ControlType = 2;
  endif
  
  if nargin<4
    w = 1;
  endif
  
  if nargin<5
    p_c.N = 10;
  endif
  
  if nargin<6
    p_o.sigma = 0.001;
  endif


#   if !struct_contains(p_c,"N")
#     p_c.N = 10;			# Number of small samples per large sample
#   endif
  
  if !struct_contains(p_c,"delta_ol")
    p_c.delta_ol = 1.0;	# OL sample interval
  endif
  
  if !struct_contains(p_c,"T")
    p_c.T = 5.0;			# Last time point.
  endif
  
  if !struct_contains(p_c,"A_w")
    p_c.A_w = 0;
  endif
  









  if !struct_contains(p_c,"A_u")
    p_c.N_u = 3;
    a_u = 2.0;
    p_c.A_u = ppp_aug(p_c.A_w,laguerre_matrix(p_c.N_u-1,a_u));
  endif




  
  if !struct_contains(p_c,"Method")
    p_c.Method = "lq"; 
    p_c.Q = eye(n_y);
    p_c.R = (0.1^2)*eye(n_u);
    p_c.N_u = n_x;
  endif
  
  [p_c.N_u,M_u] = size(p_c.A_u);
  if (p_c.N_u<>M_u)
    error("A_u must be square");
  endif
  
  ## Check w.
  [n_w,m_w] = size(w);
  if ( (n_w<>n_y) || (m_w<>1) )
    error(sprintf("ppp_lin_run: w must a column vector with %i elements",n_y));
  endif
  
  ## Initialise
  x_0 = zeros(n_x,1);
  x_est = x_0;

  ## Initilise simulation state
  x = x_0;
##x(2) = 0.2;		
		#   x(2) = y_0(1);
				#   x(4) = y_0(2);

  if ControlType==0		# Step input
    I = 1;			# 1 large sample
    p_c.delta_ol = p_c.T	# I
    K_w = zeros(p_c.N_u,n_y);
    K_w(1,1) = 1;
    K_w(2,1) = -1;
    K_x = zeros(p_c.N_u,n_x);
    U = K_w*w;			# Initial control U
  else				# PPP control
    I = ceil(p_c.T/p_c.delta_ol); # Number of large samples
    if strcmp(p_c.Method, "original")
      tau = [10:0.1:11]*(2/a_u);	# Time horizons
      [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
    elseif strcmp(p_c.Method, "lq")
      tau = [0:0.001:1.0]*5; # Time horizons
      [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,p_c.A_u] \
	  = ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R);
    else
      error(sprintf("Method %s not recognised", p_c.Method));
    endif
    







    U = K_w*w;			# Initial control U

    ## Checks
    [ol_zeros, ol_poles] = sys2zp(sys)
    cl_poles = eig(A - B*k_x)
  endif

  ## Observer design
  Ad = expm(A*p_c.delta_ol);		# Discrete-time transition matrix
  if (ControlType==2)
    G = eye(n_x);			# State noise gain 
    sigma_x = eye(n_x);		# State noise variance
    Sigma = p_o.sigma*eye(n_y);	# Measurement noise variance
    
    L = dlqe(Ad,G,C,sigma_x,Sigma)
  else
    L = zeros(n_x,n_y);
  endif
  
  obs_poles = eig(Ad-L*C)

  ## Short sample interval
  dt = p_c.delta_ol/p_c.N;






  ## Control loop
  y = [];
  u = [];
  t = [];
  y_e = [];
  t_e = [];


  for i=1:I
    i
    if Simulate
      t_sim = [0:p_c.N]*dt;
      [yi,ui,xsi] = ppp_ystar (A,B,C,D,x,p_c.A_u,U,t_sim);
      x = xsi(:,p_c.N+1);
      y_now = yi(:,p_c.N+1);
    else			# The real thing
      to_rt(U');		# Send U
      data = from_rt(p_c.N);	# Receive data
      [yi,ui] = convert_data(data);
      y_now = yi(:,p_c.N);	# Current output
    endif
    

    ## Zero-gain (OL) observer with state resetting
    [x_est y_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
    
				#       ## Reset states
				#       x_est(2) = y_now(1);	# Position
				#       x_est(4) = y_now(2)/g_s;	# Angle 
    
    ##Control
    U = K_w*w- K_x*x_est;

    ## Save
    ti  = [(i-1)*p_c.N:i*p_c.N-1]*dt; 
    t = [t;ti'];
    y = [y;yi(:,1:p_c.N)'];
    u = [u;ui(:,1:p_c.N)'];
    y_e = [y_e; y_est'];
    t_e = [t_e; (i*p_c.N)*dt];

  endfor



  ## Put data on file (so can use for identification)
  filename = sprintf("%s_ident_data.dat",Name);
  eval(sprintf("save -ascii %s t y u",filename));


  ## Plot
  gset nokey
  title("");
  boxed=0;
  monochrome=1;
  grid;
  xlabel("t");

  ylabel("y");
  figure(1);plot(t,y, t_e,y_e,"+");
 				#  figfig("OL_y","eps",boxed,monochrome);
  ylabel("u");
  figure(2);plot(t,u);
 				#  figfig("OL_u","eps",boxed,monochrome);




endfunction







|



|



|


|
<
|
|
|

|






|
|

|
>
>
>
>
>
>
>
>
>
|
|
|
|
|
>
>
>
>

|
<
<
<
|


<
<
<
<
|







<
|



<
<
<









|
|



|






|
>
>
>
>
>
>
>
|








|
|

|






|



>
>
>
>
>







>
>










|


|
|
<
|

<
<
<
<

|








>

>
>
















|


|
>
>

>

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85



86
87
88




89
90
91
92
93
94
95
96

97
98
99
100



101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183




184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  endif
  
  if nargin<3
    ControlType = 2;
  endif
  
  if nargin<4
    w = ones(n_y,1);;
  endif
  
  if nargin<5
    x_0 = zeros(n_x,1);
  endif
  
  if nargin<6
    p_c.N = 5;
  endif

  if nargin<7

    p_o.sigma = 1e-1;
  endif

  if !struct_contains(p_c,"delta_ol")
    p_c.delta_ol = 0.5;	# OL sample interval
  endif
  
  if !struct_contains(p_c,"T")
    p_c.T = 5.0;			# Last time point.
  endif
  
  if !struct_contains(p_c,"Method")
    p_c.Method = "lq";
  endif

  if struct_contains(p_c,"Method")
    if strcmp(p_c.Method,"lq") 
      p_c.Q = eye(n_y);
      p_c.R = (0.5^2)*eye(n_u);
      p_c.N_u = n_x;
    elseif strcmp(p_c.Method,"original");
      if !struct_contains(p_c,"A_w")
	p_c.A_w = 0;
      endif
      if !struct_contains(p_c,"A_u")
	p_c.N_u = n_x;
	a_u = 1.0;
	p_c.A_u = laguerre_matrix(p_c.N_u,a_u)
      endif
    else
      error(sprintf("Method %s not recognised", p_c.Method));
    endif
  endif
  
  if !struct_contains(p_o,"x_0")



    p_o.x_0 = zeros(n_x,1);
  endif
  





  ## Check w.
  [n_w,m_w] = size(w);
  if ( (n_w<>n_y) || (m_w<>1) )
    error(sprintf("ppp_lin_run: w must a column vector with %i elements",n_y));
  endif
  
  ## Initialise

  x_est = p_o.x_0;

  ## Initilise simulation state
  x = x_0;




  if ControlType==0		# Step input
    I = 1;			# 1 large sample
    p_c.delta_ol = p_c.T	# I
    K_w = zeros(p_c.N_u,n_y);
    K_w(1,1) = 1;
    K_w(2,1) = -1;
    K_x = zeros(p_c.N_u,n_x);
    U = K_w*w;			# Initial control U
  else
    I = ceil(p_c.T/p_c.delta_ol) # Number of large samples
    if strcmp(p_c.Method, "original")
      tau = [10:0.1:11]*(2/a_u);	# Time horizons
      [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
    elseif strcmp(p_c.Method, "lq") # LQ design
      tau = [0:0.001:1.0]*5; # Time horizons
      [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,p_c.A_u] \
	  = ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R);
    else
      error(sprintf("Method %s not recognised", p_c.Method));
    endif

    ##Sanity check A_u
    [p_c.N_u,M_u] = size(p_c.A_u);
    if (p_c.N_u<>M_u)
      error("A_u must be square");
    endif
    
    
    U = K_w*w			# Initial control U

    ## Checks
    [ol_zeros, ol_poles] = sys2zp(sys)
    cl_poles = eig(A - B*k_x)
  endif

  ## Observer design
  Ad = expm(A*p_c.delta_ol);		# Discrete-time transition matrix
  if (ControlType==2)		# 
    G = eye(n_x);		# State noise gain 
    sigma_x = eye(n_x);		# State noise variance
    Sigma = p_o.sigma*eye(n_y)	# Measurement noise variance
    
    L = dlqe(Ad,G,C,sigma_x,Sigma)
  else
    L = zeros(n_x,n_y);
  endif
  
  obs_poles = eig(Ad-L*C);

  ## Short sample interval
  dt = p_c.delta_ol/p_c.N;

  ## Write the include file for the real-time function
  disp("Writing Ustar.h");
  ppp_ustar2h(ppp_ustar (p_c.A_u, n_u, [0:dt:p_c.delta_ol], 0,0)); 


  ## Control loop
  y = [];
  u = [];
  t = [];
  y_e = [];
  t_e = [];
  e_e = [];
  tick = time;
  for i=1:I
    i
    if Simulate
      t_sim = [0:p_c.N]*dt;
      [yi,ui,xsi] = ppp_ystar (A,B,C,D,x,p_c.A_u,U,t_sim);
      x = xsi(:,p_c.N+1);
      y_now = yi(:,p_c.N+1);
    else			# The real thing
      to_rt(U');		# Send U
      data = from_rt(p_c.N);	# Receive data
      [yi,ui] = convert_data(data); 
      y_now = yi(:,p_c.N);	# Current output
    endif

    ## Observer

    [x_est y_est e_est] = ppp_int_obs (x_est,y_now,U,A,B,C,D,p_c.A_u,p_c.delta_ol,L);
    




    ##Control
    U = K_w*w - K_x*x_est

    ## Save
    ti  = [(i-1)*p_c.N:i*p_c.N-1]*dt; 
    t = [t;ti'];
    y = [y;yi(:,1:p_c.N)'];
    u = [u;ui(:,1:p_c.N)'];
    y_e = [y_e; y_est'];
    t_e = [t_e; (i*p_c.N)*dt];
    e_e = [e_e; e_est];
  endfor
  
  sample_interval = (time-tick)/(I*p_c.N)

  ## Put data on file (so can use for identification)
  filename = sprintf("%s_ident_data.dat",Name);
  eval(sprintf("save -ascii %s t y u",filename));


  ## Plot
  gset nokey
  title("");
  boxed=0;
  monochrome=1;
  grid;
  xlabel("t");

  ylabel("y");
  figure(1);plot(t,y, t_e,y_e,"+");

  ylabel("u");
  figure(2);plot(t,u);

  ylabel("e");
  figure(3);plot(t_e,e_e);


endfunction


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]