#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: ode_r2m
# Reduce ODE to matlab ODE
# P.J.Gawthrop 14 June 1991, 12 Jan 1994, April 1994, Jan 95.
# Copyright (c) P.J.Gawthrop 1991, 1994, 1995, 1996
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.13 1998/05/21 16:19:54 peterg
## Modified to include explicit algebraic loop solution
##
## Revision 1.12 1998/05/21 12:55:48 peterg
## Put in algebraic equation stuff
##
## Revision 1.11 1998/05/21 08:05:23 peterg
## Back under RCS
##
## Revision 1.10 1998/04/14 07:25:02 peterg
## _input now has arguments (x,t)
##
## Revision 1.9 1998/03/30 14:18:07 peterg
## Removed NERO command
##
## Revision 1.8 1998/02/25 18:03:49 peterg
## Removed the argument reading bits.
##
## Revision 1.7 1997/08/29 07:58:17 peterg
## Changed MTT to mtt in the .m files.
##
# Revision 1.6 1997/01/05 19:34:35 peterg
# Don't write globals which are already assigned to a number.
#
## Revision 1.5 1996/09/13 19:41:39 peter
## *** empty log message ***
##
## Revision 1.4 1996/09/12 18:33:32 peter
## Put back under rcs
##
## Revision 1.3 1996/08/30 11:04:28 peter
## Changed line length to 500.
##
## Revision 1.2 1996/08/24 14:09:41 peter
## Global parameter passing.
##
## Revision 1.1 1996/08/18 12:03:49 peter
## Initial revision
##
###############################################################
#Inform user
echo Creating $1_ode.m
echo Creating $1_odea.m
echo Creating $1_odeo.m
# Remove the old log file
rm -f ode_r2m.log
#Remove the temporary files
rm -f $1_ode.mc
rm -f $1_ode.m1
rm -f $1_ode.m2
rm -f $1_ode.m3
rm -f $1_ode.m4
rm -f $1_odea.m1;
rm -f $1_odeo.m1;
# Use reduce to accomplish the transformation
reduce >ode_r2m.log << EOF
%Read the reduce definitions file
in "$1_def.r";
%Read the reduce ODE file
in "$1_ode.r";
% Matrix output function
in"$MTTPATH/trans/matlab_matrix.r";
%Set up the number of argument variables to zero in case the user has forgotten
MTTNVar := 0;
%Read the parameter file
in "$1_sympar.r";
%ON NERO; % Suppress zero elements
%Define the common part of the functions.
PROCEDURE common;
BEGIN
write "% Read in the input";
write "u = $1_input(x,t)";
write "% Read in the definitions";
write "[nx,ny,nu,nz,nyz] = $1_def";
% write "% Read in the arguments";
% write "$1_args";
write "% Set up the State variables";
FOR i := 1:MTTNx DO
BEGIN
write "mttx", i, " = x(", i, ");";
END;
write "% Set up the Input variables";
IF MTTNu>0 THEN
FOR i := 1:MTTNu DO
BEGIN
write "mttu", i, " = u(", i, ");";
END;
END;
% The common part
OUT "$1_ode.mc";
common();
SHUT "$1_ode.mc";
% Set up internal inputs (if any)
OUT "$1_ode.m3";
write "% Set up the Internal Input variables";
IF MTTNyz>0 THEN
FOR i := 1:MTTNyz DO
BEGIN
write "mttui", i, " = mttui(", i, ");";
END;
SHUT "$1_ode.m3";
OUT "$1_ode.m4";
write "% Set up the Internal Input variables (saved in the state vector)";
IF MTTNyz>0 THEN
FOR i := 1:MTTNyz DO
BEGIN
write "mttui(", i, ") = x(", i+MTTNx, ");";
END;
SHUT "$1_ode.m4";
% The body of the ode function
GENTRANOUT "$1_ode.m1";
mtt_matrix := MTTdX$
mtt_matrix_n := MTTNx$
mtt_matrix_m := 1$
mtt_matrix_name := MTTdX$
matlab_matrix();
GENTRAN MTTdx := mtt_matrix;
GENTRANSHUT "$1_ode.m1";
% The algebraic equations (if any)
GENTRANOUT "$1_odea.m1";
mtt_matrix := MTTYz$
mtt_matrix_n := MTTNYz$
mtt_matrix_m := 1$
mtt_matrix_name := MTTYz$
matlab_matrix();
GENTRAN MTTYz := mtt_matrix;
GENTRANSHUT "$1_odea.m1";
%Fortran switches - one line expressions
OFF echo;
ON fort$
cardno!* := 1$
fortwidth!* := 10000$
OFF period$
MTTdx := MTTdx;
SHUT "$1_ode.m";
OUT "$1_odea.m";
write "function zero = $1_odea(x,t);";
write "% zero = $1_odea(x,t);";
write "%Algebraic equations in octave form for system $1;;";
write "%File $1_odea.m;;";
write "%Generated by MTT;;";
%Write algebraic equations if any ...
zero := MTTYz;
SHUT "$1_odea.m";
% Now do the y = g(x,t) function.
% The body of the odeo function
GENTRANOUT "$1_odeo.m1";
mtt_matrix := MTTy$
mtt_matrix_n := MTTNy$
mtt_matrix_m := 1$
mtt_matrix_name := MTTy$
matlab_matrix();
GENTRAN MTTy := mtt_matrix;
GENTRANSHUT "$1_odeo.m1";
EOF
# Create the ode.m function
cat <<EOF > $1_ode.m
function mttdx = $1_ode(x,t);
% mttdx = $1_ode(x,t);
%ODE in Octave form for system $1;
%File $1_ode.m;
%Generated by MTT on `date`;
EOF
# Create the globals
sympar2global_txt2m $1 >> $1_ode.m
#Common bit
cat $1_ode.mc >> $1_ode.m
#Extract internal input from state vector
cat $1_ode.m4 >> $1_ode.m
cat <<EOF >> $1_ode.m
% Solve the algebraic equations (if any)
if nyz>0
global xx tt;
xx = x; tt=t;
MTTui = fsolve('$1_odea',mttui);
else
mttui = [];
end
EOF
cat $1_ode.m3 >> $1_ode.m
cat <<EOF >> $1_ode.m
% The differential equations
EOF
cat $1_ode.m1 >> $1_ode.m
cat <<EOF >> $1_ode.m
% Append the internal inputs to the state derivative
mttdx = [mttdx; mttui];
EOF
# Create the odea.m function
cat <<EOF > $1_odea.m
function mttyz = $1_odea(mttui);
% mttyz = $1_odea(mttui);
%Algebraic equations in Octave form for system $1;
%File $1_odea.m;
%Generated by mtt on `date`;
EOF
# Create the globals
sympar2global_txt2m $1 >> $1_odea.m
cat <<EOF >> $1_odea.m
global xx tt;
x = xx; t=tt;
EOF
#Common bit
cat $1_ode.mc >> $1_odea.m
# Internal inputs
cat $1_ode.m3 >> $1_odea.m
cat <<EOF >> $1_odea.m
% The algebraic equations
EOF
cat $1_odea.m1 >> $1_odea.m
# Create the odeo.m function
cat <<EOF > $1_odeo.m
function mtty = $1_odeo(x,t);
% mtty = $1_odeo(x,t);
%Algebraic equations in Octave form for system $1;
%File $1_odeo.m;
%Generated by MTT on `date`;
EOF
# Create the globals
sympar2global_txt2m $1 >> $1_odeo.m
#Common bit
cat $1_ode.mc >> $1_odeo.m
#Extract internal input from state vector
cat $1_ode.m4 >> $1_odeo.m
# Internal inputs
cat $1_ode.m3 >> $1_odeo.m
cat <<EOF >> $1_odeo.m
% The output equations
EOF
cat $1_odeo.m1 >> $1_odeo.m