#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: dm2tf_r
# Reduce descriptor matrices to transfer function
# P.J.Gawthrop 8th May 1991, Dec 1993, April 1994.
# Copyright (c) P.J.Gawthrop, 1991, 1993, 1994.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.2 1998/03/27 15:00:23 peterg
## reduce ---> symbolic
##
## Revision 1.1 1996/08/25 10:09:55 peter
## Initial revision
##
###############################################################
#Inform user
echo Creating $1_tf.r
# Remove the old log file
rm -f dm2tf_r.log
# Use reduce to accomplish the transformation
$SYMBOLIC >dm2tf_r.log << EOF
%ON FLOAT;
IN "$1_def.r";
IN "$1_dm.r";
IN "$1_subs.r";
OFF Echo;
OFF Nat;
%create sE-A
%MTT_SEA := s*MTTE-MTTA;
%Find the denominator of the TF - det(sE-A);
%comden := det(MTT_SEA);
%Find the Adjoint transpose.
%matrix AdjT(MTTNx,MTTNx);
%FOR i := 1:MTTNx DO
% BEGIN
% FOR j := 1:MTTNx DO
% AdjT(i,j) := cofactor(MTT_SEA,i,j);
% END;
%Adj := TP(AdjT);
%Find the numerator matrix
%Num := MTTC*Adj*MTTB + MTTD*comden;
%Create the transfer function matrix
MTTTF := MTTD;
IF MTTNy>0 THEN MTTTF := MTTTF + (MTTC * ((s*MTTE-MTTA)^-1) * MTTB);
%MTTTF := Num/comden;
OUT "$1_tf.r";
%Declare the transfer function matrix
write "matrix MTTTF(", MTTNy, ",", MTTNu, ")$"$
%And write it.
%MTTTF := MTTTF;
FOR i := 1:MTTNy DO
BEGIN
FOR j := 1:MTTNu DO
IF MTTTF(i,j) NEQ 0 THEN write "MTTTF(", i, ",", j, ") := ", MTTTF(i,j)$
END;
write ";END;"$
SHUT "$1_tf.r";
EOF
# Now invoke the standard error handling.
mtt_error_r dm2tf_r.log