%SUMMARY MA: Mass-action kinetics for Re
%DESCRIPTION Parameter 1: kappa
OPERATOR MA;
%%% Two port version (standard)
FOR ALL n_out, A_f, A_r, kappa
LET MA(R, flow,kappa,flow,n_out,
A_f,effort,1,
A_r,effort,2) = kappa*(exp(A_f/RT) - exp(A_r/RT));
%%% Four port version (stoichiometric) with integral causality
%% Flows on ports 1 & 2 = flow on port 3.
FOR ALL A_f, A_r, v_1, v_2,kappa
LET MA(R, flow,kappa,flow,1,
A_f,effort,1,
A_r,effort,2,
v_1,flow,3,
v_2,effort,4) = v_1;
FOR ALL A_f, A_r, v_1, v_2,kappa
LET MA(R, flow,kappa,flow,2,
A_f,effort,1,
A_r,effort,2,
v_1,flow,3,
v_2,effort,4) = v_1;
%% Flow on port 4 is induced flow
FOR ALL A_f, A_r, v_1, v_2,kappa
LET MA(R, flow,kappa,flow,4,
A_f,effort,1,
A_r,effort,2,
v_1,flow,3,
v_2,effort,4) = kappa*(exp(A_f/RT) - exp(A_r/RT));
%%% Four port version (stoichiometric) with flow imposed on port 1
%% Flow on port 2 = flow on port 1
FOR ALL A_1,A_2,A_3,A_4, v_1,v_2,v_3,v_4, kappa
LET MA(R, flow,kappa,flow,2,
v_1,flow,1,
A_2,effort,2,
v_3,flow,3,
A_4,effort,4) = v_1;
%% Flow on port 4 = flow on port 1
FOR ALL A_1,A_2,A_3,A_4, v_1,v_2,v_3,v_4, kappa
LET MA(R, flow,kappa,flow,4,
v_1,flow,1,
A_2,effort,2,
v_3,flow,3,
A_4,effort,4) = v_1;
%% Effort on port 1
FOR ALL A_1,A_2,A_3,A_4,v_1,v_2,v_3,v_4,kappa
LET MA(R,flow,kappa,effort,1,
v_1,flow,1,
A_2,effort,2,
v_3,flow,3,
A_4,effort,4) = RT*log( (v_1/kappa) + exp(A_2/RT) );
%%% Four port version (stoichiometric) with flow imposed on port 2
%% Flow on port 1 = flow on port 2
FOR ALL A_1,A_2,A_3,A_4, v_1,v_2,v_3,v_4, kappa
LET MA(R, flow,kappa,flow,1,
A_1,effort,1,
v_2,flow,2,
v_3,flow,3,
A_4,effort,4) = v_2;
%% Flow on port 4 = flow on port 2
FOR ALL A_1,A_2,A_3,A_4, v_1,v_2,v_3,v_4, kappa
LET MA(R, flow,kappa,flow,4,
A_1,effort,1,
v_2,flow,2,
v_3,flow,3,
A_4,effort,4) = v_2;
%% Effort on port 2
FOR ALL A_1,A_2,A_3,A_4,v_1,v_2,v_3,v_4,kappa
LET MA(R,flow,kappa,effort,2,
A_1,effort,1,
v_2,flow,2,
v_3,flow,3,
A_4,effort,4) = RT*log( (v_2/kappa) + exp(A_1/RT) );