File mttroot/mtt/bin/trans/dae2cse_r artifact 6ca53e8f3b part of check-in 239b76b10d


#! /bin/sh


     ###################################### 
     ##### Model Transformation Tools #####
     ######################################

# Bourne shell script: dae2cse_r
# Differential-algebraic equations to constrained-state equations
# P.J.Gawthrop 14 June 1991, 8 Aug 1991, 2 April 1992, 14 April 1994, 28 Dec 94
# Copyright (c) P.J.Gawthrop 1991, 1992, 1994.

###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.5  1998/05/20 15:23:26  peterg
## Put MTTYz := MTTYz outsise the BEGIN/END
##
## Revision 1.4  1998/05/20 15:13:09  peterg
## Writes out algebraic equations (if any).
##
## Revision 1.3  1998/03/03 09:02:46  peterg
## Replaced MTTEyx*MTTEdX + MTTEyu*MTTdu; term
##
## Revision 1.2  1997/08/26 08:22:36  peterg
## Changed
## MTTY := MTTY + MTTEyx*MTTdX + MTTEyu*MTTdu;
## to
## MTTY := MTTY + MTTEyx*MTTEdX + MTTEyu*MTTdu;
##
## This sorts out the problem when dz appears in the output equation.
##
## Revision 1.1  1997/08/26 08:20:18  peterg
## Initial revision
##
## Revision 1.2  1996/08/25 09:57:30  peter
## Sorted out bug when MTTNz=0
##
## Revision 1.1  1996/08/15 16:47:02  peter
## Initial revision
##
###############################################################


#Explicit solution option
Solving=$2;
if [ "$Solving" = "Solving" ]; then
    solve=1
    echo "Creating $1_cse.r (with explicit solution of algebraic equations)"
else
    solve=0
    echo "Creating $1_cse.r"
fi

# Remove the old log file
rm -f dae2cse_r.log

# Use reduce to accomplish the transformation
$SYMBOLIC >dae2cse_r.log << EOF

OFF Echo;
OFF Nat;
ON NERO;

in "$1_def.r";
MTTdxs := MTTdX;  %Save the symbolic form of dX

in "$1_subs.r";
in "$1_dae.r";


%Create F_x, F_y matrices - assumming equations are 
% linear in dZ
IF MTTNz>0 THEN 
BEGIN
% Find MTTFx;
write "% Find MTTFx;";

matrix MTTFx(MTTNx,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNx DO
    MTTFx(i,j) := df(MTTdX(i,1), dzj, 1);
  END;

% Find MTTFy;
write "% Find MTTFy;";

matrix MTTFy(MTTNy,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNy DO
    MTTFy(i,j) := df(MTTy(i,1), dzj, 1);
  END;

%Create G_x, G_u matrices 
write "%Create G_x, G_u matrices ";


% Find MTTGx;
write "% Find MTTGx;";

matrix MTTGx(MTTNz,MTTNx);
FOR j := 1:MTTNx DO
  BEGIN
  xj := MTTX(j,1);
  FOR i := 1:MTTNz DO
    MTTGx(i,j) := df(MTTZ(i,1), xj, 1);
  END;

% Find MTTGu;
write "% Find MTTGu;";

matrix MTTGu(MTTNz,MTTNu);
FOR j := 1:MTTNu DO
  BEGIN
  uj := MTTu(j,1);
  FOR i := 1:MTTNz DO
    MTTGu(i,j) := df(MTTZ(i,1), uj, 1);
  END;

%Create E matrices
write "%Create E matrices";

matrix MTTExx(MTTNx,MTTNx); MTTExx := MTTFx*MTTGx;
matrix MTTExu(MTTNx,MTTNu); MTTExu := MTTFx*MTTGu;
matrix MTTEyx(MTTNy,MTTNx); MTTEyx := MTTFy*MTTGx;
matrix MTTEyu(MTTNy,MTTNu); MTTEyu := MTTFy*MTTGu;


matrix MTTE(MTTNx,MTTNx);   MTTE := MTTI - MTTExx;


  %% The following gets rid of the dZs; there must be a better way.
  MTTdZ1 := 0;
  MTTdZ2 := 0;
  MTTdZ3 := 0;
  MTTdZ4 := 0;
  MTTdZ5 := 0;
  MTTdZ6 := 0;
  MTTdZ7 := 0;
  MTTdZ8 := 0;
  MTTdZ9 := 0;
  MTTdZ10 := 0;
  MTTdZ11 := 0;
  MTTdZ12 := 0;
  MTTdZ13 := 0;
  MTTdZ14 := 0;
  MTTdZ15 := 0;
  MTTdZ16 := 0;
  MTTdZ17 := 0;
  MTTdZ18 := 0;
  MTTdZ19 := 0;

MTTEdX := MTTdX; %Ie MTTEdX is MTTdX with the dz terms deleted ie EdX.
MTTdX := MTTdXs;  %Restore the symbolic dX

%% Add on input derivative terms
MTTEdX := MTTEdX + MTTExu*MTTdu;


MTTY := MTTY + MTTEyx*MTTEdX;
%%% This causes the matrix mismatch
%%% MTTdXs and MTTdu need setting in _def.r file
%%MTTY := MTTY +  MTTEyu*MTTdu;
MTTY := MTTY + MTTEyx*(MTTE^(-1))*MTTEdX;


END; %%of MTTNz>0

IF MTTNz=0 THEN 
BEGIN
  MTTEdX := MTTdX;
  MTTE   := MTTI;
END;

IF (MTTNyz>0) AND ($solve>0) THEN
BEGIN
  %%%% Try and solve algebraic loops!!

  %Create list of the relevant equations 
  MTT_eqns := {};
  FOR i := 1:MTTNyz DO
    MTT_eqns := append(MTT_eqns,{MTTyz(i,1)});

  %Create list of the relevant unknowns
  MTT_unknowns := {};
  FOR i := 1:MTTNyz DO
    MTT_unknowns := append(MTT_unknowns,{MTTUi(i,1)});

  %Solve the algebraic equations symbolically
  %The result seems to be in an extra list - I don't know why
  % So remove the outer list with first.

  MTT_sol := first(solve(MTT_eqns,MTT_unknowns));

  %Substitute back into the equations
  FOR i := 1:MTTNyz DO
  BEGIN
    MTT_sol_i := first(MTT_sol); MTT_sol := rest(MTT_sol);
    set(lhs(MTT_sol_i),rhs(MTT_sol_i));
  END;

  % No algebraic variables left!
  MTTNYz := 0;
END; % IF MTTNyz>0

%%Create the _cse.r file
OUT "$1_cse.r";

IF MTTNx>0 THEN
BEGIN
  write "matrix MTTEdX(", MTTNx, ",1)";
END;
MTTEdX := MTTEdX;

IF MTTNy>0 THEN
BEGIN
  write "matrix MTTY(", MTTNy, ",1)";
END;

MTTY := MTTY;

IF MTTNu>0 THEN
BEGIN
  write "matrix MTTU(", MTTNu, ",1)";
  write "matrix MTTdU(", MTTNu, ",1)";
END;
MTTU := MTTU;

IF MTTNx>0 THEN
BEGIN
  write "matrix MTTE(", MTTNx, ",", MTTNx, ")";
END;
MTTE := MTTE;

IF MTTNz>0 THEN
BEGIN
  IF MTTNx>0 THEN IF MTTNy>0 THEN
  BEGIN
    write "matrix MTTEyx(", MTTNy, ",", MTTNx, ")";
  END;
  MTTEyx := MTTEyx;
%%%%%  MTTdU := MTTdU;
END;

IF MTTNyz>0 THEN
  BEGIN
  write "matrix MTTYz(", MTTNyz, ",1)";
  END
ELSE
  BEGIN
  write "MTTNYz := 0;";
  MTTYz := 0;
  END;

  MTTYz := MTTYz;


write ";END;";

SHUT "$1_cse.r";
quit;

EOF

# Now invoke the standard error handling.
mtt_error_r dae2cse_r.log


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]