#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: dae2dm_r
# Differential-algebraic equation to linear descriptor matrices conversion
# P.J.Gawthrop 8th May 1991, 7 June 1991, April 1994.
# Copyright (c) P.J.Gawthrop, 1991, 1994.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
# Revision 1.2 1996/08/25 09:53:35 peter
# Error handling added.
#
## Revision 1.1 1996/08/18 20:03:51 peter
## Initial revision
##
###############################################################
#Inform user
echo Creating $1_dm.r
# Remove the old log file
rm -f dae2dm_r.log
# Use reduce to accomplish the transformation
reduce >dae2dm_r.log << EOF
in "$1_def.r";
in "$1_dae.r";
in "$1_cr.r";
%%in "$1_sympar.r";
OFF Echo;
OFF Nat;
%Total number of descriptor variables
MTTN := MTTNx + 2*MTTNz + MTTNyz;
IF MTTN>0 THEN
BEGIN
% Find MTTE : the E matrix
matrix MTTE(MTTN,MTTN);
% First row partition
IF MTTNx>0 THEN
FOR j := 1:MTTNx DO
MTTE(j,j) := 1;
% Second row partition
IF MTTNz>0 THEN
FOR j := 1:MTTNz DO
MTTE(j+MTTNx, j+MTTNx) := 1;
% Find MTTA : the A matrix
matrix MTTA(MTTN,MTTN);
% First row partition: x
IF MTTNx>0 THEN
BEGIN
FOR j := 1:MTTNx DO
BEGIN
xj := MTTX(j,1);
FOR i := 1:MTTNx DO
MTTA(i,j) := df(MTTdX(i,1), xj, 1);
END;
IF MTTNz>0 THEN
FOR j := 1:MTTNz DO
BEGIN
dzj := MTTdz(j,1);
FOR i := 1:MTTNx DO
MTTA(i, j + MTTNx + MTTNz) := df(MTTdX(i,1), dzj, 1);
END;
IF MTTNyz>0 THEN
FOR j := 1:MTTNyz DO
BEGIN
uij := MTTUi(j,1);
FOR i := 1:MTTNx DO
MTTA(i, j + MTTNx + 2*MTTNz) := df(MTTdX(i,1), uij, 1);
END;
END;
% Second row partition: z
IF MTTNz>0 THEN
FOR j := 1:MTTNz DO
MTTA(j + MTTNx, j + MTTNx + MTTNz) := 1;
% Third row partition
IF MTTNz>0 THEN
BEGIN
IF MTTNx>0 THEN
FOR j := 1:MTTNx DO
BEGIN
xj := MTTX(j,1);
FOR i := 1:MTTNz DO
MTTA(i + MTTNx + MTTNz,j) := df(MTTZ(i,1), xj, 1);
END;
FOR j := 1:MTTNz DO
MTTA(j + MTTNx + MTTNz, j + MTTNx) := -1;
FOR j := 1:MTTNz DO
BEGIN
dzj := MTTdz(j,1);
FOR i := 1:MTTNz DO
MTTA(i + MTTNx + MTTNz, j + MTTNx + MTTNz) := df(MTTZ(i,1), dzj, 1);
END;
IF MTTNyz>0 THEN
FOR j := 1:MTTNyz DO
BEGIN
uij := MTTUi(j,1);
FOR i := 1:MTTNz DO
MTTA(i+MTTNx+MTTNz, j+MTTNx+2*MTTNz) := df(MTTZ(i,1), uij, 1);
END;
END;
% Fourth row partition
IF MTTNyz>0 THEN
BEGIN
IF MTTNx>0 THEN
FOR j := 1:MTTNx DO
BEGIN
xj := MTTX(j,1);
FOR i := 1:MTTNyz DO
MTTA(i + MTTNx + 2*MTTNz,j) := df(MTTYz(i,1), xj, 1);
END;
IF MTTNz>0 THEN
FOR j := 1:MTTNz DO
BEGIN
dzj := MTTdz(j,1);
FOR i := 1:MTTNyz DO
MTTA(i + MTTNx + 2*MTTNz, j + MTTNx + MTTNz) := df(MTTYz(i,1), dzj, 1);
END;
IF MTTNyz>0 THEN
FOR j := 1:MTTNyz DO
BEGIN
uij := MTTUi(j,1);
FOR i := 1:MTTNyz DO
MTTA(i+MTTNx+2*MTTNz, j+MTTNx+2*MTTNz) := df(MTTYz(i,1), uij, 1);
END;
END;
% Find MTTB : the B matrix
matrix MTTB(MTTN,MTTNu);
IF MTTNu>0 THEN
BEGIN
% First row partition
IF MTTNx>0 THEN
BEGIN
FOR j := 1:MTTNu DO
BEGIN
uj := MTTU(j,1);
FOR i := 1:MTTNx DO
MTTB(i,j) := df(MTTdX(i,1), uj, 1);
END;
END;
% Third row partition
IF MTTNz>0 THEN
BEGIN
FOR j := 1:MTTNu DO
BEGIN
uj := MTTU(j,1);
FOR i := 1:MTTNz DO
MTTB(i + MTTNx + MTTNz ,j) := df(MTTZ(i,1), uj, 1);
END;
END;
% Fourth row partition
IF MTTNyz>0 THEN
BEGIN
FOR j := 1:MTTNu DO
BEGIN
uj := MTTU(j,1);
FOR i := 1:MTTNyz DO
MTTB(i + MTTNx + 2*MTTNz,j) := df(MTTYz(i,1), uj, 1);
END;
END;
END;
% Find MTTC : the C matrix
matrix MTTC(MTTNy,MTTN);
IF MTTNy>0 THEN
BEGIN
% First column partition
IF MTTNx>0 THEN
BEGIN
FOR i := 1:MTTNy DO
FOR j := 1:MTTNx DO
BEGIN
xj := MTTX(j,1);
MTTC(i,j) := df(MTTY(i,1), xj, 1);
END;
END;
% Third column partition
IF MTTNz>0 THEN
BEGIN
FOR i := 1:MTTNy DO
FOR j := 1:MTTNz DO
BEGIN
dzj := MTTdZ(j,1);
MTTC(i, j + MTTNx + MTTNz) := df(MTTY(i,1), dzj, 1);
END;
END;
% Fourth column partition
IF MTTNyz>0 THEN
BEGIN
FOR i := 1:MTTNy DO
FOR j := 1:MTTNyz DO
BEGIN
uij := MTTUi(j,1);
MTTC(i, j + MTTNx + 2*MTTNz) := df(MTTY(i,1), uij, 1);
END;
END;
END;
END; %of MTTN>0
% Find MTTD : the D matrix
matrix MTTD(MTTNy,MTTNu);
IF MTTNy>0 THEN
IF MTTNu>0 THEN
BEGIN
FOR i := 1:MTTNy DO
FOR j := 1:MTTNu DO
BEGIN
uj := MTTU(j,1);
MTTD(i,j) := df(MTTY(i,1), uj, 1);
END;
END;
%Zap the dz terms (not a nice way)
MTTdz1 := 0;
MTTdz2 := 0;
MTTdz3 := 0;
MTTdz4 := 0;
MTTdz5 := 0;
MTTdz6 := 0;
MTTdz7 := 0;
MTTdz8 := 0;
MTTdz9 := 0;
MTTdz10 := 0;
MTTdz11 := 0;
MTTdz12 := 0;
MTTdz13 := 0;
MTTdz14 := 0;
MTTdz15 := 0;
MTTdz16 := 0;
MTTdz17 := 0;
MTTdz18 := 0;
MTTdz19 := 0;
%Substitute the ss values
in "$1_sspar.r";
%Create the output file
OUT "$1_dm.r";
%Write out the matrices.
IF MTTN>0 THEN
BEGIN
write "matrix MTTE(", MTTN, ",", MTTN, ");";
FOR i := 1:MTTN DO
FOR j := 1:MTTN DO IF MTTE(i,j) NEQ 0 THEN
write "MTTE(", i, ",", j, ") := ", MTTE(i,j);
write "matrix MTTA(", MTTN, ",", MTTN, ");";
FOR i := 1:MTTN DO
FOR j := 1:MTTN DO IF MTTA(i,j) NEQ 0 THEN
write "MTTA(", i, ",", j, ") := ", MTTA(i,j);
END;
IF MTTN>0 THEN
IF MTTNu>0 THEN
BEGIN
write "matrix MTTB(", MTTN, ",", MTTNu, ");";
FOR i := 1:MTTN DO
FOR j := 1:MTTNu DO IF MTTB(i,j) NEQ 0 THEN
write "MTTB(", i, ",", j, ") := ", MTTB(i,j);
END;
%Write it out
IF MTTNy>0 THEN
IF MTTN>0 THEN
BEGIN
write "matrix MTTC(", MTTNy, ",", MTTN, ");";
FOR i := 1:MTTNy DO
FOR j := 1:MTTN DO IF MTTC(i,j) NEQ 0 THEN
write "MTTC(", i, ",", j, ") := ", MTTC(i,j);
END;
IF MTTNy>0 THEN IF MTTNu>0 THEN
BEGIN
write "matrix MTTD(", MTTNy, ",", MTTNu, ");";
FOR i := 1:MTTNy DO
FOR j := 1:MTTNu DO IF MTTD(i,j) NEQ 0 THEN
write "MTTD(", i, ",", j, ") := ", MTTD(i,j);
END;
write "END;";
SHUT "$1_dm.r";
quit;
EOF
# Now invoke the standard error handling.
mtt_error_r dae2dm_r.log