25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.10 2002/05/13 16:01:09 gawthrop
## Addes Q weighting matrix
##
## Revision 1.9 2002/05/08 10:14:21 gawthrop
## Idetification now OK (Moved data range in ppp_optimise by one sample interval)
##
## Revision 1.8 2002/04/23 17:50:39 gawthrop
|
>
>
>
|
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.11 2002/05/20 13:32:36 gawthrop
## Sanity check on y_0
##
## Revision 1.10 2002/05/13 16:01:09 gawthrop
## Addes Q weighting matrix
##
## Revision 1.9 2002/05/08 10:14:21 gawthrop
## Idetification now OK (Moved data range in ppp_optimise by one sample interval)
##
## Revision 1.8 2002/04/23 17:50:39 gawthrop
|
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
printf("\n");
endif
while (abs(reduction)>extras.criterion)&&\
(abs(err)>extras.criterion)&&\
(iterations<extras.max_iterations)
iterations = iterations + 1; # Increment iteration counter
[y,y_par,x] = eval(sim_command); # Simulate
[N_data,N_y] = size(y);
if (N_y!=n_y)
mess = sprintf("n_y (%i) in data not same as n_y (%i) in model", n_y,N_y);
error(mess);
endif
if ( (N_data-n_data)<1 )
error(sprintf("y_0 (%i) must be shorter than y (%i)", n_data, N_data));
endif
## Use the last part of the simulation to compare with data
## And shift back by one data point
y = y(N_data-n_data:N_data-1,:);
y_par = y_par(N_data-n_data:N_data-1,:);
##Evaluate error, cost derivative J and cost second derivative JJ
err = 0;
J = zeros(n_th,1);
JJ = zeros(n_th,n_th);
for i = 1:n_y
E = y(:,i) - y_0(:,i); # Error in ith output
|
|
|
>
>
|
|
|
<
<
|
|
>
>
>
>
>
>
|
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
printf("\n");
endif
while (abs(reduction)>extras.criterion)&&\
(abs(err)>extras.criterion)&&\
(iterations<extras.max_iterations)
iterations = iterations + 1 # Increment iteration counter
[y,y_par,x] = eval(sim_command); # Simulate
[N_data,N_y] = size(y)
if (N_y!=n_y)
mess = sprintf("n_y (%i) in data not same as n_y (%i) in model", n_y,N_y);
error(mess);
endif
## Use the last part of the simulation to compare with data
## ### Removed #### And shift back by one data point
# if ( (N_data-n_data)<1 )
# error(sprintf("y_0 (%i) must be shorter than y (%i)", n_data, N_data));
# endif
y = y(N_data-n_data+1:N_data,:);
y_par = y_par(N_data-n_data+1:N_data,:);
if extras.visual==1
## Plot
title("Optimisation data");
plot([y y_0])
endif
##Evaluate error, cost derivative J and cost second derivative JJ
err = 0;
J = zeros(n_th,1);
JJ = zeros(n_th,n_th);
for i = 1:n_y
E = y(:,i) - y_0(:,i); # Error in ith output
|