Differences From Artifact [c64ac34ead]:

To Artifact [80100ee5cc]:


22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


44
45
46
47
48
49
50
51
52
53
54

55
56
















57
58
59



60

61
62
63


64
65
66

67
68
69

70
71
72
  endif
  
  if nargin<6
    weight = ones(size(y_s));
  endif

  if nargin<7
    criterion = 1e-5;
  endif
  
  if nargin <8
    max_iterations = 10;
  endif

  if nargin<9
    alpha = 1.0;
  endif
  
  if (!strcmp(method,"time"))&&(!strcmp(method,"freq"))
    error("method must be either time or freq")
  endif
  


  N_theta = length(free);
  Weight = weight*ones(1,N_theta); # Sensitivity weight
  e_last = 1e20;
  error=1e10;
  theta = theta_0;
  Theta = [];
  Error = [];
  Y = [];
  iterations = -1;
  while (abs(e_last-error)>criterion)&&(iterations<max_iterations)
    iterations = iterations + 1;

    e_last = error;
    eval(sprintf("[t,y,y_theta] = mtt_s%s(system_name,theta,free);",method)); # Simulate system
















    Theta = [Theta theta];	# Save parameters
    Y = [Y y];			# Save output
    E = weight.*(y - y_s);	# Weighted error



    y_theta = Weight.*y_theta;	# Weighted sensitivity

    error = (E'*E);		# Sum the error
    Error = [Error error];
    ##    theta(free) = theta(free) - alpha*(real(y_theta'*y_theta)\real(y_theta'*E));


    tol = 1e-4;
    JJ = real(y_theta'*y_theta);
    ## sigma = svd(JJ)

    theta(free) = theta(free) - alpha*( pinv(JJ,tol)*real(y_theta'*E) );
  endwhile


endfunction









|



|










>
>
|
<
|






|

>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
>
>
>
|
>
|
|
|
>
>
|
|
|
>
|
|

>



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  endif
  
  if nargin<6
    weight = ones(size(y_s));
  endif

  if nargin<7
    criterion = 1e-7;
  endif
  
  if nargin <8
    max_iterations = 25;
  endif

  if nargin<9
    alpha = 1.0;
  endif
  
  if (!strcmp(method,"time"))&&(!strcmp(method,"freq"))
    error("method must be either time or freq")
  endif
  
  [n_data,n_y] = size(y_s);

  n_th = length(free);

  error_old = 1e20;
  error=1e10;
  theta = theta_0;
  Theta = [];
  Error = [];
  Y = [];
  iterations = -1;
  while (abs(error_old-error)>criterion)&&(iterations<max_iterations)
    iterations = iterations + 1;
    error_old_old = error_old;
    error_old = error;
    eval(sprintf("[t,y,y_theta] = mtt_s%s(system_name,theta,free);",method)); # Simulate system
    error = 0; 
    J = zeros(n_th,1);
    JJ = zeros(n_th,n_th);
    for i = 1:n_y
      E = weight(:,i).*(y(:,i) - y_s(:,i)); # Weighted error
      error = error + (E'*E);	# Sum the error

      Weight = weight(:,i)*ones(1,n_th); # Sensitivity weight
      y_theta_w = Weight.*y_theta(:,i:n_y:n_y*n_th); # Weighted sensitivity
      J  = J + real(y_theta_w'*E); # Jacobian
      JJ = JJ + real(y_theta_w'*y_theta_w); # Newton Euler approx Hessian
    endfor

    error = error
    ## Diagnostics
    Error = [Error error];	# Save error
    Theta = [Theta theta];	# Save parameters
    Y = [Y y];			# Save output

    ## Update the estimate if we are not done yet.
    if (abs(error_old-error)>criterion)&&(iterations<max_iterations)
      if error>error_old+criterion # Halve step size and try again
        factor = 10;
	disp(sprintf("step/%i",factor));
	error = error_old;	# Go back to previous error value
	error_old = inf;	# Don't let it think its converged
	theta(free) = theta(free)  + step; # Reverse step
	step = step/factor;	# new stepsize
      else			# Recompute step size
	tol = 1e-5;
	step =  pinv(JJ,tol)*J;	# Step size
	#step =  pinv(JJ)*J;	# Step size (built in tol)
      endif
      theta(free) = theta(free) - step; # Increment parameters
    endif

   endwhile
endfunction



MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]