Differences From Artifact [8a9cdf56d8]:

To Artifact [53df088d8e]:


11
12
13
14
15
16
17



18
19
20
21
22
23
24
# Copyright (c) P.J.Gawthrop 1991, 1992, 1994.

###############################################################
## Version control history
###############################################################
## $Id$
## $Log$



## Revision 1.6  1998/07/19 12:44:35  peterg
## Set MTTYz := 0 if the array is empty - avoids irritating error
## message.
##
## Revision 1.5  1998/05/20 15:23:26  peterg
## Put MTTYz := MTTYz outsise the BEGIN/END
##







>
>
>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright (c) P.J.Gawthrop 1991, 1992, 1994.

###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.7  1998/10/05 10:46:15  peterg
## Commented out redundant MTTY := MTTY + MTTEyx*MTTEdX;
##
## Revision 1.6  1998/07/19 12:44:35  peterg
## Set MTTYz := 0 if the array is empty - avoids irritating error
## message.
##
## Revision 1.5  1998/05/20 15:23:26  peterg
## Put MTTYz := MTTYz outsise the BEGIN/END
##
75
76
77
78
79
80
81




82
83
84
85
86
87
88
89
90
91


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


133
134
135


136
137
138
139
140
141
142
143
144
145
146
in "$1_dae.r";


%Create F_x, F_y matrices - assumming equations are 
% linear in dZ
IF MTTNz>0 THEN 
BEGIN




% Find MTTFx;
write "% Find MTTFx;";

matrix MTTFx(MTTNx,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNx DO
    MTTFx(i,j) := df(MTTdX(i,1), dzj, 1);
  END;



% Find MTTFy;
write "% Find MTTFy;";

matrix MTTFy(MTTNy,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNy DO
    MTTFy(i,j) := df(MTTy(i,1), dzj, 1);
  END;

%Create G_x, G_u matrices 
write "%Create G_x, G_u matrices ";


% Find MTTGx;


write "% Find MTTGx;";

matrix MTTGx(MTTNz,MTTNx);
FOR j := 1:MTTNx DO
  BEGIN
  xj := MTTX(j,1);
  FOR i := 1:MTTNz DO
    MTTGx(i,j) := df(MTTZ(i,1), xj, 1);
  END;


% Find MTTGu;
write "% Find MTTGu;";

matrix MTTGu(MTTNz,MTTNu);
FOR j := 1:MTTNu DO
  BEGIN
  uj := MTTu(j,1);
  FOR i := 1:MTTNz DO
    MTTGu(i,j) := df(MTTZ(i,1), uj, 1);
  END;

%Create E matrices
write "%Create E matrices";



matrix MTTExx(MTTNx,MTTNx); MTTExx := MTTFx*MTTGx;
matrix MTTExu(MTTNx,MTTNu); MTTExu := MTTFx*MTTGu;
matrix MTTEyx(MTTNy,MTTNx); MTTEyx := MTTFy*MTTGx;


matrix MTTEyu(MTTNy,MTTNu); MTTEyu := MTTFy*MTTGu;


matrix MTTE(MTTNx,MTTNx);   MTTE := MTTI - MTTExx;


  %% The following gets rid of the dZs; there must be a better way.
  MTTdZ1 := 0;
  MTTdZ2 := 0;
  MTTdZ3 := 0;
  MTTdZ4 := 0;







>
>
>
>










>
>

















>
>









>















>
>



>
>



<







78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
in "$1_dae.r";


%Create F_x, F_y matrices - assumming equations are 
% linear in dZ
IF MTTNz>0 THEN 
BEGIN

IF MTTNx>0 THEN 
BEGIN

% Find MTTFx;
write "% Find MTTFx;";

matrix MTTFx(MTTNx,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNx DO
    MTTFx(i,j) := df(MTTdX(i,1), dzj, 1);
  END;

END;

% Find MTTFy;
write "% Find MTTFy;";

matrix MTTFy(MTTNy,MTTNz);
FOR j := 1:MTTNz DO
  BEGIN
  dzj := MTTdZ(j,1);
  FOR i := 1:MTTNy DO
    MTTFy(i,j) := df(MTTy(i,1), dzj, 1);
  END;

%Create G_x, G_u matrices 
write "%Create G_x, G_u matrices ";


% Find MTTGx;
IF MTTNx>0 THEN 
BEGIN
write "% Find MTTGx;";

matrix MTTGx(MTTNz,MTTNx);
FOR j := 1:MTTNx DO
  BEGIN
  xj := MTTX(j,1);
  FOR i := 1:MTTNz DO
    MTTGx(i,j) := df(MTTZ(i,1), xj, 1);
  END;
END;

% Find MTTGu;
write "% Find MTTGu;";

matrix MTTGu(MTTNz,MTTNu);
FOR j := 1:MTTNu DO
  BEGIN
  uj := MTTu(j,1);
  FOR i := 1:MTTNz DO
    MTTGu(i,j) := df(MTTZ(i,1), uj, 1);
  END;

%Create E matrices
write "%Create E matrices";

IF MTTNx>0 THEN 
BEGIN
matrix MTTExx(MTTNx,MTTNx); MTTExx := MTTFx*MTTGx;
matrix MTTExu(MTTNx,MTTNu); MTTExu := MTTFx*MTTGu;
matrix MTTEyx(MTTNy,MTTNx); MTTEyx := MTTFy*MTTGx;
matrix MTTE(MTTNx,MTTNx);   MTTE := MTTI - MTTExx;
END;
matrix MTTEyu(MTTNy,MTTNu); MTTEyu := MTTFy*MTTGu;





  %% The following gets rid of the dZs; there must be a better way.
  MTTdZ1 := 0;
  MTTdZ2 := 0;
  MTTdZ3 := 0;
  MTTdZ4 := 0;
156
157
158
159
160
161
162


163
164
165
166
167

168
169
170
171
172
173


174
175
176
177
178
179
180
181
  MTTdZ14 := 0;
  MTTdZ15 := 0;
  MTTdZ16 := 0;
  MTTdZ17 := 0;
  MTTdZ18 := 0;
  MTTdZ19 := 0;



MTTEdX := MTTdX; %Ie MTTEdX is MTTdX with the dz terms deleted ie EdX.
MTTdX := MTTdXs;  %Restore the symbolic dX

%% Add on input derivative terms
MTTEdX := MTTEdX + MTTExu*MTTdu;



%%%%%MTTY := MTTY + MTTEyx*MTTEdX;
%%% This causes the matrix mismatch
%%% MTTdXs and MTTdu need setting in _def.r file
MTTY := MTTY +  MTTEyu*MTTdu;


MTTY := MTTY + MTTEyx*(MTTE^(-1))*MTTEdX;


END; %%of MTTNz>0

IF MTTNz=0 THEN 
BEGIN
  MTTEdX := MTTdX;







>
>





>






>
>
|







171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  MTTdZ14 := 0;
  MTTdZ15 := 0;
  MTTdZ16 := 0;
  MTTdZ17 := 0;
  MTTdZ18 := 0;
  MTTdZ19 := 0;

IF MTTNx>0 THEN 
BEGIN
MTTEdX := MTTdX; %Ie MTTEdX is MTTdX with the dz terms deleted ie EdX.
MTTdX := MTTdXs;  %Restore the symbolic dX

%% Add on input derivative terms
MTTEdX := MTTEdX + MTTExu*MTTdu;
END;


%%%%%MTTY := MTTY + MTTEyx*MTTEdX;
%%% This causes the matrix mismatch
%%% MTTdXs and MTTdu need setting in _def.r file
MTTY := MTTY +  MTTEyu*MTTdu;

IF MTTNx>0 THEN 
  MTTY := MTTY + MTTEyx*(MTTE^(-1))*MTTEdX;


END; %%of MTTNz>0

IF MTTNz=0 THEN 
BEGIN
  MTTEdX := MTTdX;

MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]