Differences From Artifact [80100ee5cc]:

To Artifact [7de5a5a949]:


1
2
3
4
5
6
7
8
function [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha)
  ## Usage: [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha)
  ##  system_name     String containg system name
  ##  y_s   actual system output
  ##  theta_0   initial parameter estimate
  ##  free  Indices of the free parameters within theta_0
  ##  weight Weighting function - same dimension as y_s
  ##  method "time" or "freq"
|







1
2
3
4
5
6
7
8
function [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha,View)
  ## Usage: [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha)
  ##  system_name     String containg system name
  ##  y_s   actual system output
  ##  theta_0   initial parameter estimate
  ##  free  Indices of the free parameters within theta_0
  ##  weight Weighting function - same dimension as y_s
  ##  method "time" or "freq"
30
31
32
33
34
35
36
37




38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58







59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  endif
  
  if nargin <8
    max_iterations = 25;
  endif

  if nargin<9
    alpha = 1.0;




  endif
  
  if (!strcmp(method,"time"))&&(!strcmp(method,"freq"))
    error("method must be either time or freq")
  endif
  
  [n_data,n_y] = size(y_s);

  n_th = length(free);
  error_old = 1e20;
  error=1e10;
  theta = theta_0;
  Theta = [];
  Error = [];
  Y = [];
  iterations = -1;
  while (abs(error_old-error)>criterion)&&(iterations<max_iterations)
    iterations = iterations + 1;
    error_old_old = error_old;
    error_old = error;

    eval(sprintf("[t,y,y_theta] = mtt_s%s(system_name,theta,free);",method)); # Simulate system







    error = 0; 
    J = zeros(n_th,1);
    JJ = zeros(n_th,n_th);
    for i = 1:n_y
      E = weight(:,i).*(y(:,i) - y_s(:,i)); # Weighted error
      error = error + (E'*E);	# Sum the error

      Weight = weight(:,i)*ones(1,n_th); # Sensitivity weight
      y_theta_w = Weight.*y_theta(:,i:n_y:n_y*n_th); # Weighted sensitivity
      J  = J + real(y_theta_w'*E); # Jacobian
      JJ = JJ + real(y_theta_w'*y_theta_w); # Newton Euler approx Hessian
    endfor

    error = error
    ## Diagnostics

    Error = [Error error];	# Save error
    Theta = [Theta theta];	# Save parameters
    Y = [Y y];			# Save output


    ## Update the estimate if we are not done yet.
    if (abs(error_old-error)>criterion)&&(iterations<max_iterations)
      if error>error_old+criterion # Halve step size and try again
        factor = 10;
	disp(sprintf("step/%i",factor));
	error = error_old;	# Go back to previous error value
	error_old = inf;	# Don't let it think its converged
	theta(free) = theta(free)  + step; # Reverse step
	step = step/factor;	# new stepsize
      else			# Recompute step size
	tol = 1e-5;
	step =  pinv(JJ,tol)*J;	# Step size
	#step =  pinv(JJ)*J;	# Step size (built in tol)
      endif
      theta(free) = theta(free) - step; # Increment parameters
    endif

   endwhile
endfunction









|
>
>
>
>









|
|









>
|
>
>
>
>
>
>
>













|
|
>
|
|
|
>



|

|



|







|
|



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  endif
  
  if nargin <8
    max_iterations = 25;
  endif

  if nargin<9
    alpha = 0.1;
  endif
  
  if nargin<10
    View = 0;
  endif
  
  if (!strcmp(method,"time"))&&(!strcmp(method,"freq"))
    error("method must be either time or freq")
  endif
  
  [n_data,n_y] = size(y_s);

  n_th = length(free);
  error_old = inf;
  error=1e50;
  theta = theta_0;
  Theta = [];
  Error = [];
  Y = [];
  iterations = -1;
  while (abs(error_old-error)>criterion)&&(iterations<max_iterations)
    iterations = iterations + 1;
    error_old_old = error_old;
    error_old = error;
    eval(sprintf("[t,y,y_theta] = \
	mtt_s%s(system_name,theta,free);",method)); # Simulate system

    if View
      xlabel("");
      title(sprintf("mtt_optimise: Weighted actual and estimated Interation %i", iterations));
      plot(t,y.*weight,t,y_s.*weight);
    endif
    
    error = 0; 
    J = zeros(n_th,1);
    JJ = zeros(n_th,n_th);
    for i = 1:n_y
      E = weight(:,i).*(y(:,i) - y_s(:,i)); # Weighted error
      error = error + (E'*E);	# Sum the error

      Weight = weight(:,i)*ones(1,n_th); # Sensitivity weight
      y_theta_w = Weight.*y_theta(:,i:n_y:n_y*n_th); # Weighted sensitivity
      J  = J + real(y_theta_w'*E); # Jacobian
      JJ = JJ + real(y_theta_w'*y_theta_w); # Newton Euler approx Hessian
    endfor

    error
 
    if error<(error_old+criterion) # Save some diagnostics
      Error = [Error error];	# Save error
      Theta = [Theta theta];	# Save parameters
      Y = [Y y];		# Save output
    endif

    ## Update the estimate if we are not done yet.
    if (abs(error_old-error)>criterion)&&(iterations<max_iterations)
      if error>(error_old+criterion) # Reduce step size and try again
        factor = 10;
	disp(sprintf("%2.2f*step",alpha));
	error = error_old;	# Go back to previous error value
	error_old = inf;	# Don't let it think its converged
	theta(free) = theta(free)  + step; # Reverse step
	step = alpha*step;	# new stepsize
      else			# Recompute step size
	tol = 1e-5;
	step =  pinv(JJ,tol)*J;	# Step size
	#step =  pinv(JJ)*J;	# Step size (built in tol)
      endif
      theta(free) = theta(free) - step; # Increment parameters
    endif
 ##   theta
  endwhile
endfunction



MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]