1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
function [T,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,Delta_ol,movie)
## usage: [T,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,movie)
## Needs documentation - see ppp_ex11 for example of use.
## OUTPUTS
## T: Time vector
## y,u,J output, input and cost
## Copyright (C) 1999 by Peter J. Gawthrop
## $Id$
if nargin<19 # No intermittent control
Delta_ol = 0;
endif
if nargin<20 # No movie
movie = 0;
endif
## Check some sizes
[n_x,n_u,n_y] = abcddim(A,B,C,D);
[n_x0,m_x0] = size(x_0);
if (n_x0 != n_x)||(m_x0 != 1)
error(sprintf("Initial state x_0 must be %ix1 not %ix%i",n_x,n_x0,m_x0));
|
|
>
>
>
>
>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
function [T,y,u,Iterations] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,Delta_ol,mu,movie)
## usage: [T,y,u,J] = ppp_qp_sim (A,B,C,D,A_u,A_w,t,Q, Tau_u,Min_u,Max_u,Order_u, Tau_y,Min_y,Max_y,Order_y, W,x_0,movie)
## Needs documentation - see ppp_ex11 for example of use.
## OUTPUTS
## T: Time vector
## y,u,J output, input and cost
## Copyright (C) 1999 by Peter J. Gawthrop
## $Id$
if nargin<19 # No intermittent control
Delta_ol = 0;
endif
if nargin<20 # No movie
mu = 0;
endif
if nargin<21 # No movie
movie = 0;
endif
## Check some sizes
[n_x,n_u,n_y] = abcddim(A,B,C,D);
[n_x0,m_x0] = size(x_0);
if (n_x0 != n_x)||(m_x0 != 1)
error(sprintf("Initial state x_0 must be %ix1 not %ix%i",n_x,n_x0,m_x0));
|
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
disp("Designing controller");
[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] = ppp_lin (A,B,C,D,A_u,A_w,t,Q);
## Set up various time vectors
dt = t(2)-t(1); # Time increment
## Make sure Delta_ol is multiple of dt
Delta_ol = floor(Delta_ol/dt)*dt
if Delta_ol>0 # Intermittent control
T_ol = 0:dt:Delta_ol-dt; # Create the open-loop time vector
else
T_ol = 0;
Delta_ol = dt;
endif
|
|
|
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
disp("Designing controller");
[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] = ppp_lin (A,B,C,D,A_u,A_w,t,Q);
## Set up various time vectors
dt = t(2)-t(1); # Time increment
## Make sure Delta_ol is multiple of dt
Delta_ol = floor(Delta_ol/dt)*dt;
if Delta_ol>0 # Intermittent control
T_ol = 0:dt:Delta_ol-dt; # Create the open-loop time vector
else
T_ol = 0;
Delta_ol = dt;
endif
|
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
[Ad, Bd] = sys2ss(dsys);
x = x_0; # Initialise state
## Initialise the saved variable arrays
X = [];
u = [];
du = [];
J = [];
tick= time;
i = 0;
disp("Simulating ...");
for t=T_cl # Outer loop at Delta_ol
##disp(sprintf("Time %g", t));
## Output constraints
[Gamma_y,gamma_y] = ppp_output_constraint (A,B,C,D,x,A_u,Tau_y,Min_y,Max_y,Order_y);
## Composite constraints
Gamma = [Gamma_u; Gamma_y];
gamma = [gamma_u; gamma_y];
## Compute U(t)
[uu U] = ppp_qp (x,W,J_uu,J_ux,J_uw,Us0,Gamma,gamma); # Compute U
## Compute the cost (not necessary but maybe interesting)
# [J_t] = ppp_cost (U,x,W,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww); # cost
# J = [J J_t];
## Simulation loop
i_ol = 0;
for t_ol=T_ol # Inner loop at dt
## Compute ol control
i_ol = i_ol+1;
range = (i_ol-1)*n_U + 1:i_ol*n_U; # Extract current U*
ut = Ustar_ol(:,range)*U; # Compute OL control (U* U)
## Simulate the system
i = i+1;
X = [X x]; # Save state
u = [u ut]; # Save input
x = Ad*x + Bd*ut; # System
# if movie # Plot the moving horizon
# tau = T(1:n_T-i); # Tau with moving horizon
# tauT = T(i+1:n_T); # Tau with moving horizon + real time
# [ys,us,xs,xu,AA] = ppp_ystar (A,B,C,D,x,A_u,U,tau); # OL response
# plot(tauT,ys, tauT(1), ys(1), "*")
# endif
endfor
endfor
## Save the last values
X = [X x]; # Save state
u = [u ut]; # Save input
tock = time;
Iterations = length(T_cl)
Elapsed_Time = tock-tick
y = C*X + D*u; # System output
T = 0:dt:t+Delta_ol; # Overall time vector
endfunction
|
>
|
>
>
<
|
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
[Ad, Bd] = sys2ss(dsys);
x = x_0; # Initialise state
## Initialise the saved variable arrays
X = [];
u = [];
Iterations = [];
du = [];
J = [];
tick= time;
i = 0;
disp("Simulating ...");
for t=T_cl # Outer loop at Delta_ol
##disp(sprintf("Time %g", t));
## Output constraints
[Gamma_y,gamma_y] = ppp_output_constraint (A,B,C,D,x,A_u,Tau_y,Min_y,Max_y,Order_y);
## Composite constraints
Gamma = [Gamma_u; Gamma_y];
gamma = [gamma_u; gamma_y];
## Compute U(t)
[uu, U, iterations] = ppp_qp (x,W,J_uu,J_ux,J_uw,Us0,Gamma,gamma,mu); # Compute U
## Compute the cost (not necessary but maybe interesting)
# [J_t] = ppp_cost (U,x,W,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww); # cost
# J = [J J_t];
## Simulation loop
i_ol = 0;
for t_ol=T_ol # Inner loop at dt
## Compute ol control
i_ol = i_ol+1;
range = (i_ol-1)*n_U + 1:i_ol*n_U; # Extract current U*
ut = Ustar_ol(:,range)*U; # Compute OL control (U* U)
## Simulate the system
i = i+1;
X = [X x]; # Save state
u = [u ut]; # Save input
Iterations = [Iterations iterations]; # Save iteration count
x = Ad*x + Bd*ut; # System
# if movie # Plot the moving horizon
# tau = T(1:n_T-i); # Tau with moving horizon
# tauT = T(i+1:n_T); # Tau with moving horizon + real time
# [ys,us,xs,xu,AA] = ppp_ystar (A,B,C,D,x,A_u,U,tau); # OL response
# plot(tauT,ys, tauT(1), ys(1), "*")
# endif
endfor
endfor
## Save the last values
X = [X x]; # Save state
u = [u ut]; # Save input
Iterations = [Iterations iterations]; # Save iteration count
tock = time;
Elapsed_Time = tock-tick
y = C*X + D*u; # System output
T = 0:dt:t+Delta_ol; # Overall time vector
endfunction
|