1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.7 1998/07/30 11:29:54 peterg
## Added implicit integration stuff
##
## Revision 1.6 1998/07/30 10:44:37 peterg
## INcluded othe integration methods.
##
## Revision 1.5 1998/07/26 11:02:20 peterg
|
>
>
>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.8 1998/08/11 13:28:03 peterg
## Lowercase mttLAST etc
##
## Revision 1.7 1998/07/30 11:29:54 peterg
## Added implicit integration stuff
##
## Revision 1.6 1998/07/30 10:44:37 peterg
## INcluded othe integration methods.
##
## Revision 1.5 1998/07/26 11:02:20 peterg
|
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
# The rest of the program
cat << EOF >> $1_ode2odes.m
$1_simpar; # Read in simulation parameters
$1_numpar; # Read in parameters
MTTilast = round(mttlast/mttdt); # Total number of steps
mttddt = mttdt/mttstepfactor;
#Initialise
MTTt = 0.0;
[MTTx] = $1_state; # Read in initial state
[MTTu] = $1_input(MTTx,MTTt); # Evaluate initial input
[MTTy] = $1_odeo(MTTx,MTTu,MTTt); # Evaluate initial output
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny); # And write them
[mttA] = zeros($Nx); # Zero the A matrix
if mttmethod==2 #Linear implicit
mttA = $1_smx(MTTx,MTTu); # Set up A matrix - linearised system
end;
#Integration loop
for MTTit = 1:MTTilast
for MTTi = 1:mttstepfactor
[MTTu] = $1_input(MTTx,MTTt);# Input
[MTTx] = $1_switch(MTTx); # Switches
[MTTdx] = $1_ode(MTTx,MTTu,MTTt);
if mttmethod==3
mttA = $1_smx(MTTx,MTTu); # Set up A matrix - linearised system
end;
[MTTx] = mtt_update(MTTdx,MTTx,mttddt,$Nx,mttmethod,mttA);
[MTTy] = $1_odeo(MTTx,MTTu,MTTt);
MTTt = MTTt + mttddt;
end;
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny);
end;
EOF
|
<
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
|
|
>
>
|
<
<
<
|
<
|
|
>
>
|
|
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
# The rest of the program
cat << EOF >> $1_ode2odes.m
$1_simpar; # Read in simulation parameters
$1_numpar; # Read in parameters
MTTilast = round(mttlast/mttdt); # Total number of steps
#Initialise
MTTt = 0.0;
[MTTx] = $1_state; # Read in initial state
[MTTu] = $1_input(MTTx,MTTt); # Evaluate initial input
[MTTy] = $1_odeo(MTTx,MTTu,MTTt); # Evaluate initial output
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny); # And write them
[mttAA] = zero_matrix($Nx); # Zero the A matrix
[mttAAx] = zero_vector($Nx); # Zero the AAx vector
if mttmethod==1 #Euler
mttsteps = mttstepfactor;
endif;
if mttmethod>1 #everything else
mttsteps = 1;
end;
mttddt = mttdt/mttsteps; # The small sample interval
if mttmethod==2 #Linear implicit
mttAA = $1_smx(MTTx,MTTu,mttdt); # Set up AA= I-Adt matrix - linearised system
end;
#Integration loop
for MTTit = 1:MTTilast
if mttmethod==3 # nonlinear implicit
[mttAA] = $1_smx(MTTx,MTTu,mttdt); # Set up AA=I-A*dt matrix - linearised system
end;
if mttmethod>1 # nonlinear implicit
[mttAAx] = $1_smxx(MTTx,MTTu,MTTx,mttdt); # Set up AAx = AA*x vector - linearised system
end;
[MTTu] = $1_input(MTTx,MTTt);# Input
[MTTx] = $1_switch(MTTx); # Switches
for MTTjt = 1:mttsteps
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[MTTx] = mtt_update(MTTdx,MTTx,mttAAx,mttAA,mttdt,mttstepfactor,$Nx,mttmethod);
MTTt = MTTt + mttddt;
end;
[MTTy] = $1_odeo(MTTx,MTTu,MTTt);
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny);
end;
EOF
|