1
2
3
4
5
6
7
8
9
10
11
12
13
|
function [Y,X] = sm2ir(A,B,C,D,T,u0,x0);
% [Y,X] = sm2ir(A,B,C,D,T,u0,x0);
% Constrained-state matrix to impulse response.
% A,B,C,D,E - (constrained) state matrices
% T vector of time points
% u0 input gain vector: u = u0*unit step.
[Ny,Nu] = size(D);
[Ny,Nx] = size(C);
if max(max(abs(D)))~=0
mtt_info('D matrix non-zero - ignoring');
|
>
>
>
>
>
>
>
<
|
>
>
>
>
>
>
>
>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
function [Y,X] = sm2ir(A,B,C,D,T,u0,x0);
% sm2ir - Constrained-state matrix to impulse response.
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%% Model Transformation Tools %%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Matlab function sm2ir
% [Y,X] = sm2ir(A,B,C,D,T,u0,x0);
% A,B,C,D,E - (constrained) state matrices
% T vector of time points
% u0 input gain vector: u = u0*unit impulse.
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Ny,Nu] = size(D);
[Ny,Nx] = size(C);
if max(max(abs(D)))~=0
mtt_info('D matrix non-zero - ignoring');
|
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
one = eye(Nx);
Y = zeros(N,Ny);
X = zeros(N,Nx);
i = 0;
for t = T'
i=i+1;
if Nx>0
expAt = expm(A*t);
x = expAt*(B*u0+x0);
X(i,:) = x';
if Ny>0
y = C*x;
Y(i,:) = y';
end;
end;
end;
|
>
>
>
>
>
|
|
|
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
one = eye(Nx);
Y = zeros(N,Ny);
X = zeros(N,Nx);
dt = T(2)-T(1);% Assumes fixed interval
expAdt = expm(A*dt); % Compute matrix exponential
expAt = one;
i = 0;
x = (B*u0+x0);
for t = T'
i=i+1;
if Nx>0
% expAt = expm(A*t);
x = expAdt*x;
X(i,:) = x';
if Ny>0
y = C*x;
Y(i,:) = y';
end;
end;
end;
|