1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: csm2sm_r
# Constrained-state equation to linear constrained-state matrices conversion
# P.J.Gawthrop 6th September 1991, May 1994
# Copyright (c) P.J.Gawthrop, 1991, 1994, 1996
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.2 1996/08/25 10:11:32 peter
## Added END in output file.
## Error handling.
##
## Revision 1.1 1996/08/19 15:06:16 peter
## Initial revision
##
###############################################################
# Inform user
echo Creating $1_sm.r
# Remove the old log file
rm -f csm2sm_r.log
# Use reduce to accomplish the transformation
reduce >csm2sm_r.log << EOF
in "$1_def.r";
in "$1_csm.r";
in "$1_cr.r";
in "$1_sympar.r";
OFF Echo;
OFF Nat;
% Find MTTA and MTTB : the A and B matrices
MTTinvE := MTTE^(-1);
MTTA := MTTinvE*MTTA;
MTTB := MTTinvE*MTTB;
%Create the output file
OUT "$1_sm.r";
%Write out the matrices.
IF MTTNx>0 THEN
BEGIN
write "matrix MTTA(", MTTNx, ",", MTTNx, ");";
FOR i := 1:MTTNx DO
FOR j := 1:MTTNx DO IF MTTA(i,j) NEQ 0 THEN
write "MTTA(", i, ",", j, ") := ", MTTA(i,j);
END;
IF MTTNx>0 THEN
IF MTTNu>0 THEN
BEGIN
write "matrix MTTB(", MTTNx, ",", MTTNu, ");";
FOR i := 1:MTTNx DO
FOR j := 1:MTTNu DO IF MTTB(i,j) NEQ 0 THEN
write "MTTB(", i, ",", j, ") := ", MTTB(i,j);
END;
%Write it out
IF MTTNy>0 THEN
IF MTTNx>0 THEN
BEGIN
write "matrix MTTC(", MTTNy, ",", MTTNx, ");";
FOR i := 1:MTTNy DO
FOR j := 1:MTTNx DO IF MTTC(i,j) NEQ 0 THEN
write "MTTC(", i, ",", j, ") := ", MTTC(i,j);
END;
IF MTTNy>0 THEN IF MTTNu>0 THEN
BEGIN
write "matrix MTTD(", MTTNy, ",", MTTNu, ");";
FOR i := 1:MTTNy DO
FOR j := 1:MTTNu DO IF MTTD(i,j) NEQ 0 THEN
write "MTTD(", i, ",", j, ") := ", MTTD(i,j);
END;
write "END;";
SHUT "$1_sm.r";
quit;
EOF
# Now invoke the standard error handling.
mtt_error_r csm2sm_r.log
|
|
|
|
|
<
<
<
<
<
<
<
>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
|
|
>
|
>
>
|
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
|
|
>
|
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
|
|
>
|
|
>
|
>
>
>
>
|
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
|
|
>
>
|
>
>
|
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
# Bourne shell script: sm2can_r
# state matrices to various canonical forms.
# P.J.Gawthrop 12 Jan 1997
# Copyright (c) P.J.Gawthrop 1997
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
###############################################################
# Inform user
echo Creating $1_can.r -- NOTE this is for SISO systems only.
# Remove the old log file
rm -f sm2can_r.log
# Use reduce to accomplish the transformation
reduce >sm2can_r.log << EOF
in "$1_def.r";
in "$1_sm.r";
in "$1_tf.r";
%Read the formatting function
in "$MTTPATH/trans/reduce_matrix.r";
OFF Echo;
OFF Nat;
% Find the controllability and observibility matrices.
MATRIX MTTCon(MTTNx,MTTNX);
MTTAB := MTTB;
FOR j := 1:MTTNx DO
BEGIN
FOR i := 1:MTTNx DO
MTTCon(i,j) := MTTAB(i,1);
MTTAB := MTTA*MTTAB;
END;
MATRIX MTTObs(MTTNx,MTTNX);
MTTCA := MTTC;
FOR i := 1:MTTNx DO
BEGIN
FOR j := 1:MTTNx DO
MTTObs(i,j) := MTTCA(1,j);
MTTCA := MTTCA*MTTA;
END;
%Canonical forms:
% This statement makes Gs a scalar transfer function
Gs := MTTtf(1,1);
% Numerator and denominator polynomials
bs := num(gs);
as := den(gs);
% extract coeficients and divide by coeff of s^n
% reverse operator puts list with highest oder coeffs first
ai := reverse(coeff(as,s));
a0 := first(ai);
MTTn := length(ai) - 1;
% Normalised coeficients;
ai := reverse(coeff(as/a0,s));
bi := reverse(coeff(bs/a0,s));
MTTm := length(bi)-1;
% Zap the (unity) first element of ai list;
ai := rest(ai);
% System in controller form
% MTTA_c matrix
matrix MTTA_c(MTTn,MTTn);
% First row is ai coefficients
for i := 1:MTTn do
MTTA_c(1,i) := -part(ai,i);
% (MTTn-1)x(MTTn-1) unit matrix in lower left-land corner (if n>1)
if MTTn>1 then
for i := 1:MTTn-1 do
MTTA_c(i+1,i) := 1;
% B_c vector;
matrix MTTB_c(MTTn,1);
MTTB_c(1,1) := 1;
% C_c vector;
matrix MTTC_c(1,MTTn);
for i := 1:MTTm+1 do
MTTC_c(1,i+MTTn-MTTm-1) := part(bi,i);
% D_c
MTTD_c := MTTD;
%Observable form.
MTTA_o := tp(MTTA_c);
MTTB_o := tp(MTTC_c);
MTTC_o := tp(MTTB_c);
MTTD_o := MTTD;
%Controllability matrix of controllable form
MATRIX MTTCon_c(MTTNx,MTTNX);
MTTAB := MTTB_c;
FOR j := 1:MTTNx DO
BEGIN
FOR i := 1:MTTNx DO
MTTCon_c(i,j) := MTTAB(i,1);
MTTAB := MTTA_c*MTTAB;
END;
% Transformation matrix;
MTTT_c := MTTCon_c*MTTCon^(-1);
%Observability matrix of observer form
MATRIX MTTObs_o(MTTNx,MTTNX);
MTTCA := MTTC_o;
FOR i := 1:MTTNx DO
BEGIN
FOR j := 1:MTTNx DO
MTTObs_o(i,j) := MTTCA(1,j);
MTTCA := MTTCA*MTTA_o;
END;
% Transformation matrix;
MTTT_o := MTTObs^(-1)*MTTObs_o;
%%%% Controller design %%%%%
% gain in controller form:
matrix MTTk_c(1,mttn);
matrix alpha_c(9,1);
alpha_c(1,1) := alpha_c1;
alpha_c(2,1) := alpha_c2;
alpha_c(3,1) := alpha_c3;
alpha_c(4,1) := alpha_c4;
alpha_c(5,1) := alpha_c5;
alpha_c(6,1) := alpha_c6;
alpha_c(7,1) := alpha_c7;
alpha_c(8,1) := alpha_c8;
alpha_c(9,1) := alpha_c9;
for i := 1:MTTNx do
MTTk_c(1,i) := alpha_c(i,1) - part(ai,i);
% Gain in physical form
MTTk := MTTk_c*MTTT_c;
%%%% Observer design %%%%%
% gain in Observer form:
matrix MTTl_o(MTTn,1);
matrix alpha_o(9,1);
alpha_o(1,1) := alpha_o1;
alpha_o(2,1) := alpha_o2;
alpha_o(3,1) := alpha_o3;
alpha_o(4,1) := alpha_o4;
alpha_o(5,1) := alpha_o5;
alpha_o(6,1) := alpha_o6;
alpha_o(7,1) := alpha_o7;
alpha_o(8,1) := alpha_o8;
alpha_o(9,1) := alpha_o9;
for i := 1:MTTNx DO
MTTL_o(i,1) := alpha_o(i,1) - part(ai,i);
% Gain in physical form
MTTL := MTTT_o*MTTL_o;
% Steady-state stuff
% Create the matrix [A B; C D];
matrix ABCD(MTTn+1,MTTn+1);
for i := 1:MTTNx do
for j := 1:MTTNx do
ABCD(i,j) := MTTA(i,j);
for i :=1:MTTNx do
ABCD(i,MTTNx+1) := MTTB(i,1);
for j := 1:MTTNx do
ABCD(MTTNx+1,j) := MTTC(1,j);
ABCD(MTTNx+1,MTTNx+1) := MTTD(1,1);
matrix zero_one(MTTNx+1,1);
zero_one(MTTNx+1,1) := 1;
%Find N vector
Nxu := ABCD^(-1)*zero_one;
%Extract the parts
MATRIX MTTX_r(MTTNx,1);
FOR i := 1:MTTNx DO
MTTX_r(i,1) := Nxu(i,1);
MTTu_r := Nxu(MTTNx+1,1);
% Compensator
matrix zero(MTTNx,1);
%State matrices
MTTA_comp := MTTA - MTTL*MTTC - MTTB*MTTK;
MTTB_comp := -MTTL;
MTTC_comp := -MTTK;
%Transfer function
%Ds := C_d*((s*MTTI - A_d)^(-1))*B_d;
%MTTTFC := Ds;
%Create the output file
OUT "$1_can.r";
%Write out the matrices.
% Controllable form
MTT_Matrix := MTTA_c$
MTT_Matrix_name := "MTTA_c"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
MTT_Matrix := MTTB_c$
MTT_Matrix_name := "MTTB_c"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNu$
Reduce_Matrix()$
MTT_Matrix := MTTC_c$
MTT_Matrix_name := "MTTC_c"$
MTT_Matrix_n := MTTNy$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
% Observable form
MTT_Matrix := MTTA_o$
MTT_Matrix_name := "MTTA_o"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
MTT_Matrix := MTTB_o$
MTT_Matrix_name := "MTTB_o"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNu$
Reduce_Matrix()$
MTT_Matrix := MTTC_o$
MTT_Matrix_name := "MTTC_o"$
MTT_Matrix_n := MTTNy$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Controllability matrix";
MTT_Matrix := MTTCon$
MTT_Matrix_name := "MTTCon"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% -Observability matrix";
MTT_Matrix := MTTObs$
MTT_Matrix_name := "MTTObs"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% -Controllability matrix - controller form";
MTT_Matrix := MTTCon_c$
MTT_Matrix_name := "MTTCon_c"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Transformation matrix - controller form";
MTT_Matrix := MTTT_c$
MTT_Matrix_name := "MTTT_c"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Gain matrix - controller form";
MTT_Matrix := MTTK_c$
MTT_Matrix_name := "MTTK_c"$
MTT_Matrix_n := MTTNu$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Gain matrix - physical form";
MTT_Matrix := MTTK$
MTT_Matrix_name := "MTTK"$
MTT_Matrix_n := MTTNu$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% -Observability matrix - Observer form";
MTT_Matrix := MTTObs_o$
MTT_Matrix_name := "MTTObs_o"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Transformation matrix - Observer form";
MTT_Matrix := MTTT_o$
MTT_Matrix_name := "MTTT_o"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
write "% - Observer Gain matrix - observer form";
MTT_Matrix := MTTL_o$
MTT_Matrix_name := "MTTL_o"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNy$
Reduce_Matrix()$
write "% - Gain matrix - physical form";
MTT_Matrix := MTTL$
MTT_Matrix_name := "MTTL"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNy$
Reduce_Matrix()$
% Controllable form
MTT_Matrix := MTTA_comp$
MTT_Matrix_name := "MTTA_comp"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
MTT_Matrix := MTTB_comp$
MTT_Matrix_name := "MTTB_comp"$
MTT_Matrix_n := MTTNx$
MTT_Matrix_m := MTTNu$
Reduce_Matrix()$
MTT_Matrix := MTTC_comp$
MTT_Matrix_name := "MTTC_comp"$
MTT_Matrix_n := MTTNy$
MTT_Matrix_m := MTTNx$
Reduce_Matrix()$
KX := MTTK*MTTX_r;
MTTu_r := MTTu_r + KX(1,1);
MTTu_r := MTTu_r;
write "END;";
SHUT "$1_can.r";
quit;
EOF
# Now invoke the standard error handling.
mtt_error_r sm2can_r.log
|