25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
+
+
+
+
+
+
|
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.12 2002/06/11 11:25:25 gawthrop
## No longer delay the simulated data.
##
## Revision 1.11 2002/05/20 13:32:36 gawthrop
## Sanity check on y_0
##
## Revision 1.10 2002/05/13 16:01:09 gawthrop
## Addes Q weighting matrix
##
## Revision 1.9 2002/05/08 10:14:21 gawthrop
## Idetification now OK (Moved data range in ppp_optimise by one sample interval)
##
## Revision 1.8 2002/04/23 17:50:39 gawthrop
|
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
-
+
-
+
+
+
-
-
-
+
+
+
-
-
-
-
+
+
+
+
+
+
+
+
|
printf("\n");
endif
while (abs(reduction)>extras.criterion)&&\
(abs(err)>extras.criterion)&&\
(iterations<extras.max_iterations)
iterations = iterations + 1; # Increment iteration counter
iterations = iterations + 1 # Increment iteration counter
[y,y_par,x] = eval(sim_command); # Simulate
[N_data,N_y] = size(y);
[N_data,N_y] = size(y)
if (N_y!=n_y)
mess = sprintf("n_y (%i) in data not same as n_y (%i) in model", n_y,N_y);
error(mess);
endif
## Use the last part of the simulation to compare with data
## ### Removed #### And shift back by one data point
if ( (N_data-n_data)<1 )
error(sprintf("y_0 (%i) must be shorter than y (%i)", n_data, N_data));
endif
# if ( (N_data-n_data)<1 )
# error(sprintf("y_0 (%i) must be shorter than y (%i)", n_data, N_data));
# endif
## Use the last part of the simulation to compare with data
## And shift back by one data point
y = y(N_data-n_data:N_data-1,:);
y_par = y_par(N_data-n_data:N_data-1,:);
y = y(N_data-n_data+1:N_data,:);
y_par = y_par(N_data-n_data+1:N_data,:);
if extras.visual==1
## Plot
title("Optimisation data");
plot([y y_0])
endif
##Evaluate error, cost derivative J and cost second derivative JJ
err = 0;
J = zeros(n_th,1);
JJ = zeros(n_th,n_th);
for i = 1:n_y
E = y(:,i) - y_0(:,i); # Error in ith output
|