Differences From Artifact [9ba3b482f5]:

To Artifact [22eb1c42b9]:


1
2


3
4
5
6
7
8
9
10
11
12
13
14


15

16
17

18
19
20
21
22









23
24
25
26
27








28
29
30
31
32



33
34

35
36
37
38
39
40





41
42
43
44
45
46
47
48
49


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22



23
24
25
26
27
28
29
30
31
32
33



34
35
36
37
38
39
40
41
42
43



44
45
46


47






48
49
50
51
52


53
54
55
56
57
58
59
-
-
+
+












+
+

+

-
+


-
-
-
+
+
+
+
+
+
+
+
+


-
-
-
+
+
+
+
+
+
+
+


-
-
-
+
+
+
-
-
+
-
-
-
-
-
-
+
+
+
+
+
-
-







function [w,y,y_theta] = mtt_sfreq(system_name,theta,indices);
  ## usage: [t,y,y_theta] = mtt_sfreq(system_name,theta);
function [w,y,y_theta] = mtt_sfreq(system_name,theta,free);
  ## usage: [w,y,y_theta] = mtt_sfreq(system_name,theta,free);
  ##
  ## Frequency response with name system_name and parameter vector theta
  ## The order of components in theta is determined in system_numpar.txt:
  ## y_theta contains the corresponding sensitivity functions
  ## Assumes system generated by the sBG approach
  ## Copyright (C) 1999 by Peter J. Gawthrop

  ## 	$Id$	

  ## Assumes SISO system 

  global mtt_n_parameters mtt_parameters # Global "argc argv"
  global mtt_w # Frequencies (if not specified in simpar file
 N = length(theta);

  eval(sprintf("[nx,ny,nu,nz,nyz] = %s_def;", system_name));
  if nargin<3
    indices = ones(size(theta));
    free = 1;
  endif
  
  N = length(theta);
  if N!=length(indices)
    error(sprintf("The length (%i) of indices must be the same as that of theta (%i)",length(indices),N));
  y_theta = [];

  if length(free)==0
    free=1;			# Make the loop happen once to get y and X
  endif
  
  [n,m]  = size(free);
  if m==1
    free = free';
  endif
  

  eval(sprintf("%s_simpar;", system_name)); # Read the "simulation" parameters
  w = logspace(mttwmin,mttwmax,mttwsteps)'; # Frequency range
  
  eval(sprintf("%s_simpar;", system_name)); # Read the "simulation"
					    # parameters
  if exist("mttwmin")		# Compute frequency range
    w = logspace(mttwmin,mttwmax,mttwsteps)'; # Frequency range
  else				# use global mtt_w
    w = mtt_w;
  endif
  
  y_theta = [];
  mtt_n_parameters = 2*N;
  mtt_parameters(2:2:2*N) = theta; # The actual parameters
  for i = 1:N
  mtt_n_parameters = 1+N;
  mtt_parameters(2:1+N) = theta; # The actual parameters
  for i = free
    if indices(i)
      mtt_parameters(1:2:2*N-1) = 0; # The sensitivity switches are off
    mtt_parameters(1) = i; # Select wich sens. function
      mtt_parameters(2*i-1) = 1;	# Set the approriate sensitivity switch
				# on
      eval(sprintf("%s_numpar;", system_name)); # Read the parameters
      eval(sprintf("[A,B,C,D,E] = %s_dm;", system_name)); # Evaluate the descriptor matrices
      fr = dm2fr(A,B,C,D,E,w);
      y_theta = [y_theta fr(:,2)]; # Sensitivity frequency response
    eval(sprintf("%s_numpar;", system_name)); # Read the parameters
    eval(sprintf("[A,B,C,D,E] = %s_dm;", system_name)); # Evaluate the
				# descriptor matrices
    fr = dm2fr(A,B,C,D,E,w);
    y_theta = [y_theta fr(:,2)]; # Sensitivity frequency response
    endif
    
  endfor

  y = fr(:,1);			# Actual frequency response
  
  
endfunction


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]