Differences From Artifact [93a2ec563f]:

To Artifact [7a76a326ac]:


1

2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
-
+







function [y,x,u,t,U,U_c,U_l] = ppp_nlin_sim (system_name,A_u,tau,t_ol,N_ol,w,extras)
function [y,x,u,t,UU,UU_c,UU_l] = ppp_nlin_sim (system_name,i_ppp,i_par,A_u,w_s,N_ol,extras)

  ## usage:  [y,x,u,t,U,U_c,U_l] = ppp_nlin_sim (system_name,A_u,tau,t_ol,N,w)
  ##
  ## 
  
  ## Simulate nonlinear PPP
  ## Copyright (C) 2000 by Peter J. Gawthrop
18
19
20
21
22
23
24
25

26

27

28
29
30


31
32
33
34

35
36
37
38
39
40






41
42






43
44
45
46


47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
18
19
20
21
22
23
24

25
26
27

28
29
30

31
32
33
34
35
36
37






38
39
40
41
42
43


44
45
46
47
48
49
50
51


52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97
















98
99
100

101
102
103
104
105
106
107
108







-
+

+
-
+


-
+
+




+
-
-
-
-
-
-
+
+
+
+
+
+
-
-
+
+
+
+
+
+


-
-
+
+









-
+








-
+







+
+
+














-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-



-
+







  endif
  
  

  ## Names
  s_system_name = sprintf("s%s", system_name);

  ## System details 
  ## System details -- defines simulation within ol interval
  par = eval(sprintf("%s_numpar;", system_name));
  simpar = eval(sprintf("%s_simpar;", system_name))
  x_0 = eval(sprintf("%s_state;", system_name))
  x_0 = eval(sprintf("%s_state(par);", system_name))
  [n_x,n_y,n_u] = eval(sprintf("%s_def;", system_name));

  ## Sensitivity system details
  ## Sensitivity system details -- defines moving horizon simulation
  simpars = eval(sprintf("%s_simpar;", s_system_name))
  sympars = eval(sprintf("%s_sympar;", s_system_name));
  pars = eval(sprintf("%s_numpar;", s_system_name));

  ## Times
  ## -- within opt horizon
  n_tau = length(tau);
  dtau = tau(2)-tau(1);		# Optimisation sample time
  Tau = [0:dtau:tau(n_tau)+eps]; # Time  in the moving axes
  n_Tau = length(Tau);
  dt = t_ol(2)-t_ol(1);
  n_t = length(t_ol);
  n_Tau = round(simpars.last/simpars.dt)
  dtau = simpars.dt
  Tau = [0:n_Tau-1]'*dtau;
  [n_tau,n_w] = size(w_s);
  tau = Tau(n_Tau-n_tau+1:n_Tau);
  w = w_s(length(w_s));		# Final value of setpoint
  T_ol = t_ol(n_t)+dt
  

  ## -- within ol interval
  n_t = round(simpar.last/simpar.dt)
  dt = simpar.dt;
  t_ol = [0:n_t-1]'*dt;
  T_ol = n_t*dt;

  ## Weight and moving-horizon setpoint
  weight = [zeros(n_y,n_Tau-n_tau), ones(n_y,n_tau)]; 
  ws = w*ones(1,n_tau);
#   weight = [zeros(n_y,n_Tau-n_tau), ones(n_y,n_tau)]; 
#   w_s = w*ones(n_tau,1);

  ## Create input basis functions
  [n_U,junk] = size(A_u);

  ## For moving horizon
  eA = expm(A_u*dtau);
  u_star_i = ones(n_U,1);
  u_star_tau = [];
  for i = 1:n_Tau
    u_star_tau = [u_star_tau, u_star_i];
    u_star_tau = [u_star_tau; u_star_i'];
    u_star_i = eA*u_star_i;
  endfor

  ## and for actual implementation
  eA = expm(A_u*dt);
  u_star_i = ones(n_U,1);
  u_star_t = [];
  for i = 1:n_t
    u_star_t = [u_star_t, u_star_i];
    u_star_t = [u_star_t; u_star_i'];
    u_star_i = eA*u_star_i;
  endfor
  
  if extras.verbose
    title("U*(tau)")
    xlabel("tau");
    plot(Tau,u_star_tau)
    title("U*(t)")
    xlabel("t_ol");
    plot(t_ol,u_star_t)
  endif
  

  ## Check number of inputs adjust if necessary
  if n_u>n_U
    disp(sprintf("Augmenting inputs with %i zeros", n_u-n_U));
    u_star_tau = [u_star_tau; zeros(n_u-n_U, n_Tau)];
    u_star_t   = [u_star_t; zeros(n_u-n_U, n_t)];
  endif
  
  if n_u<n_U
    error(sprintf("n_U (%i) must be less than or equal to n_u (%i)", \
		  n_U, n_u));
  endif
		  
  
  ## Indices of U and sensitivities
  FREE = "[";
  free_name = "ppp";
  for i=1:n_U
    FREE = sprintf("%ssympars.%s_%i sympars.%s_%is", FREE, free_name, \
		   i, free_name, i);
    if i<n_U
      symbol = "; ";
    else
      symbol = "];";
    endif
    FREE = sprintf("%s%s", FREE, symbol);
  endfor
FREE
  free = eval(FREE);

  ## Compute linear gains 
  [A,B,C,D] = eval(sprintf("%s_sm(par);", system_name));
  B = B(:,1); D = D(:,1);
  [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,A_u,0,tau);
  [k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,A_u,0,tau');

  ## Main simulation loop
  y = [];
  x = [];
  u = [];
  t = [];
  t_last = 0;
123
124
125
126
127
128
129
130

131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155

156
157
158


159
160
161
162
163
164
165
166
167
168




169
170

171
172
173

174
175
176
177
178
179







180
181
182
183



184
185
186
187



188
189
190


191
192
193
194
195
196
197
198
199
200
201
202
117
118
119
120
121
122
123

124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146

147

148
149
150

151
152
153
154
155
156
157
158




159
160
161
162
163

164

165

166
167





168
169
170
171
172
173
174
175



176
177
178
179



180
181
182
183


184
185
186
187




188
189











-
+

-
+



















-
+
-

-
+


-
+
+






-
-
-
-
+
+
+
+

-
+
-

-
+

-
-
-
-
-
+
+
+
+
+
+
+

-
-
-
+
+
+

-
-
-
+
+
+

-
-
+
+


-
-
-
-


-
-
-
-
  elseif strcmp(extras.U_initial,"zero")
    U = zeros(n_U,1);
  else
    error(sprintf("extras.U_initial = \"%s\" is invalid", extras.U_initial));
  endif

  ## Reverse time to get "previous" U
   U = expm(-A_u*T_ol)*U;
  U = expm(-A_u*T_ol)*U;

  for i = 1:N_ol
  for i = 1:N_ol		# Main loop 
    ## Compute initial U from linear case
    U_l = K_w*w - K_x*x_0;

    ## Compute initial U  for next time from continuation trajectory
    U_c = expm(A_u*T_ol)*U;

    ## Create sensitivity system state
    x_0s(1:2:2*n_x) = x_0;
    
    ## Set next U (initial value for optimisation)
    if  strcmp(extras.U_next,"linear")
      U = U_l;
    elseif strcmp(extras.U_next,"continuation")
      U = U_c;
    elseif strcmp(extras.U_next,"zero")
      U = zeros(n_U,1);
    else
      error(sprintf("extras.U_next = \"%s\" is invalid", extras.U_next));
    endif
    ## Put initial value of U into the parameter vector
    pars(i_ppp(:,1)) = U;	# Put initial value of U into the parameter vector
    pars(free(:,1)) = U;

    ## Compute U
    ## Compute U by optimisation
    tick = time;
    if extras.max_iterations>0
      [U, U_all, Error, Y] = ppp_nlin(s_system_name,x_0s,u_star_tau,tau,pars,free,ws,extras);
      [U, U_all, Error, Y] = ppp_nlin(system_name,x_0s,pars,simpars,u_star_tau,w_s,i_ppp,extras);
      pars(i_ppp(:,1)) = U;	# Put final value of U into the parameter vector
    else
      Error = [];
    endif
    opt_time = time-tick;  
    printf("Optimisation %i took %i iterations and %2.2f sec\n", i, \
	   length(Error), opt_time);
#     title(sprintf("Moving horizon trajectories: Interval %i",i));
#     grid;
#     plot(tau,Y)
  
    ##title(sprintf("Moving horizon trajectories: Interval %i",i));
    ##grid;
    ##plot(tau,Y)
    
    ## Generate control

    u_ol = u_star_t*U;		# Not used - just for show
    u_ol = U'*u_star_t(1:n_U,:);

    ## Simulate system 
    ## Simulate system over one ol interval
    ## (Assumes that first gain parameter is one)
    U_ol = [u_ol; zeros(n_u-1,n_t)]; # Generate the vector input
    [y_ol,x_ol] = eval(sprintf("%s_sim(x_0, U_ol, t_ol, par);", system_name));

    ## Extract state for next time
    x_0  = x_ol(:,n_t);
    ##U = [u_ol zeros(n_t,n_u-1)]; # Generate the vector input
    [y_ol,y_s,x_ol] = eval(sprintf("%s_ssim(x_0s, pars, simpar, u_star_t);", s_system_name));
    
    x_0  = x_ol(n_t+1,:)';	# Extract state for next time
    y_ol = y_ol(1:n_t,:);	# Avoid extra points due to rounding error 
    x_ol = x_ol(1:n_t,:);	# Avoid extra points due to rounding error 


    y = [y y_ol(:,1:n_t)];
    x = [x x_ol(:,1:n_t)];
    u = [u u_ol(:,1:n_t)];
    y = [y; y_ol];
    x = [x; x_ol];
    u = [u; u_ol];

    UU = [UU, U];
    UU_l = [UU_l, U_l];
    UU_c = [UU_c, U_c];
    UU = [UU; U'];
    UU_l = [UU_l; U_l'];
    UU_c = [UU_c; U_c'];

    t = [t, t_ol(:,1:n_t)+t_last*ones(1,n_t) ];
    t_last = t_last + t_ol(n_t); 
    t = [t; t_ol+t_last*ones(n_t,1) ];
    t_last = t_last + T_ol; 
  endfor

  ## Rename returned matrices
  U = UU;
  U_l = UU_l;
  U_c = UU_c;
endfunction






MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]